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Table 4.6 (continued)

Methods Description
Initialization [nitialization method

ProcessArrival Event method that executes the arrival event
ProcessDeparture Event method that executes the departure event
ReportGeneration Report generator

The entry point of the program and the location of the control logic is through class Sim, shown in
Figure 4.3. Variables of classes EventList and Queue are declared. As these classes are all useful for
programs other than Sim, their declarations are given in other files. per Java rules. A variable of the Java
huilt-in class Random is also deciared: instances of this class provided random-number streams. The main
method controls the overall flow of the event-scheduling/time-advance algorithm.

// Class Sim variables
public static double Clock, MeanInterArrivalTime, MeanServiceTime,
SIGMA, LastEventTime, TotalBusy, MaxQueuelength, SumResponseTime;
public static long NumberOfCustomers, QueuelLength, NumberInService,
TotalCustomers, NumberOfDepartures, LongService;

public final static int arrival = 1;
public final static int departure = 2;
public static EventList FutureEventlist;
public static Queue Customers;

public static Random stream;

public static void main{(String argvi{]) ({

MeanInterArrivalTime = 4.5; MeanferviceTime = 3.2;

SIGMA = 0.6; TotalCustomers = 1000;

long seed = Long.parselLong (argv[0])

stream = new Random(seed) ; // initialize rng stream
FutureEventList = new EventListi{);

Customers = new Queue!);

initialization();

// Loop until first “TotalCustomers” have departed

while (NumberOfDepartures < TotalCustomers ) {
gvent evt = (Event)FutureEventlList.getMin(); // get imminent event
FuturekventList .dequeue () ; // be rid of it
Clock = evt.get timel(); // advance in time
if i evt.get type!{) == arrival )} PrccessArrival (evt];

else ProcessDeparture(evt);

}

ReportGeneration{};

Figure 4.3 Java main program for the single-server queue simulation.
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The main program method first gives values to variables describing model parameters: it creates
instances of the random-number generator. event list, and customer queue: and then it calls method
Initialization to initialize other variables, such as the statistics-gathering variables. Control then
enters a loop which is exited only after TotalCustomers customers have received service. Inside the
loop. a copy of the imminent event is obtained by calling the getMin method of the priority queue, and then
that event is removed from the event list by a call to dequeue. The global simulation time Clock is set to the
time-stamp contained in the imminent event. and then either ProcessArrival or ProcessDeparture
is called. depending on the type of the event. When the simulation is finally over, a call is made to method
ReportGeneration to create and print out the final report.

A listing for the Sim class method Initialization is given in Figure 4.4. The simulation clock.
system state, and other variables are initialized. Note that the first arrival event is created by generating a
local Event variable whose constructor accepts the event’s type and time. The event time-stamp is gener-
ated randomly by a call to Sim class method exponential and is passed to the random-number stream
to use with the mean of the exponential distribution from which to sample. The event is inserted into the
future event list by calling method enqueue. This logic assumes that the system is empty at simulated time
Clock =0, so that no departure can be scheduled. It is straightforward to modify the code to accommodate alter-
native starting conditions by adding events to FutureEventList and Customers as needed.

Figure 4.5 gives a listing of Sim class method ProcessArrival. which is called to process
each arrival event. The basic logic of the arrival event for a single-server queue was given in Figure 3.5
(where LQ corresponds to QueueLength and LS corresponds to NumberInService). First. the new
arrival is added to the queue Customers of customers in the system. Next, if the server is idle
(NumberInService ==0)then the new customer is to go immediately into service. so Sim class method
ScheduleDeparture is called to do that scheduling. An arrival to an idle queue does not update the
cumulative statistics, except possibly the maximum queue length. An arrival to a busy queue does nor cause
the scheduling of a departure. but does increase the total busy time by the amount of simulation time between
the current event and the one immediately preceding it (because, if the server is busy now, it had to have had
at least one customer in service by the end of processing the previous event). In either case. a new arrival is
responsible for scheduling the next arrival. one random interarrival time into the future. An arrival event is
created with simulation time equal to the current Clock value plus an exponential increment, that event
is inserted into the future event list, the variable LastEventTime recording the time of the last event
processed is set to the current time, and control is returned to the main method of class Sim.

public static void Initialization() {
Clock = 0.0;

QueueLength = 0;

e

NumberInService = 0;
LastEventTime = 0.0;
TotalBusy = 0 ;
MaxQueuel.ength = 0;
SumResponseTime = 0;
NumberOfDepartures = 0;

LongService = 0;

// create first arrival event

Event evt =

new Event (arrival, exponential( stream, MeanInterArrivalTime));
FutureEventList.enqueue{ evt );

Figure 4.4 Java initialization method for the single-server queue simulation.
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public static void ProcessArrival (Event evt) {
Customers.enqueue {evt) ;
QueuelLength++;
// if the server 1is idle, fetch the event, do statistics
// and put into service
1f ( NumberInService == 0) ScheduleDeparture();
else TotalBusy += (Clock - LastEventTime); // sexrver is busy

// adjust max queue length statistics
if (MaxQueueLength < QueueLength) MaxQueuelength = QueueLength;

// schedule the next arrival

Event next arrival =

new Event (arrival, Clock+exponential (stream,MeanInterArrivalTime)) ;
FutureEventList.enqueue( next _arrival );

LastEventTime = Clock;

Figure 4.5 Java arrival event method for the single-server queue simulation.

Sim class method ProcessDeparture. which executes the departure event. is listed in Figure 4.6, as
is method ScheduleDeparture. A flowchart for the logic of the departure event was given in Figure 3.6.
After removing the event from the queue of all customers. the number in service is examined. If there are
customers waiting, then the departure of the next one to enter service is scheduled. Then, cumulative
statistics recording the sum of all response times, sum of busy time, number of customers who used more than
4 minutes of service time, and number of departures are updated. (Note that the maximum queue length
cannot change in value when a departure occurs.) Notice that customers are removed from Customers in

public static void ScheduleDeparture() {
double ServiceTime;
// get the job at the head of the queue
while ({ ServiceTime = normal{stream,MeanServiceTime, SIGMA}) < 0 );
Event depart = new Event (departure,Clock+ServiceTime) ;
FutureEventList .enqueue ( depart | ;
NumberInService = 1;
QueueLength- -;
r
public static void ProcessDeparture Event e} {
// get the customer description
Event finished = (Event) Customers.dequeue!) ;
// 1if there are customers in the gjueue then schedule
// the departure of the next one
if{ QueuelLength > 0 ) ScheduleDeparture();
else NumberInService = 0;
// measure the response time and add t> the sum

double response = (Clock - finished.get time());
SumResponseTime += response;

if{ response > 4.0 ) LongService++; // record long service
TotalBusy += (Clock - LastEventTi.me );
NumberOfDepartures++;

LastEventTime = Clock;

Figure 4.6 Java departure event method for the single-server queue simulation.
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FIFO order: hence, the response time response of the departing customer can be computed by subtracting
the arrival time of the job leaving service (obtamed from the copy of the arrival event removed from the
Customers gueue) from the current simulation time. After the incrementing of the total number of depar-
tures and the saving of the time of this event. control is returned to the main program.

Figure 4.6 also gives the logic of method ScheduleDeparture. called by both Process-
Arrival and ProcessDeparture to put the next customer into service. The Sim class method normal.
which generates normally distributed service times. is called until it produces a nonnegative samiple. A new
event with type departure is created, with event time equal to the current simulation time plus the service
time just sampled. That event is pushed onto FutureEventList. the number in service is set to one. and
the number waiting (QueueLength) is decremented to reflect the fact that the customer entering service is
waiting no longer.

The report generator. Sim class method ReportGeneration. is listed in Figure 4.7. The summary
statistics. RHO. AVGR, and PC4, are computed by the formulas in Table 4.6: then the input parameters arc
printed. followed by the summary statistics. It is a good idea to print the input parameters at the end of the sim-
ulation, in order to verify that their values are correct and that these values have not been inadvertently changed.

Figure 4.8 provides a listing of Sim class methods exponential and normal. used to generate random
variates. Both of these functions call method nextDouble. which is defined for the built-in Java Random
class generates a random number uniformly distributed on the (0.1) interval. We use Random here for sim-
plicity of explanation; superior random-number generators can be built by hand. as described in Chapter 7.

public static void ReportGeneraticn() {

double RHO = TotalBusy/Clock;
double AVGR = SumResponseTime/TotalCustoners;
double PC4 = ((double)LongService}/Tota.Customers;

System.out.print ( "SINGLE SERVER QUEUE SIMULATICN ");

System.out.println( "- GROCERY STORE CHECKOUT CCUNTER ") ;

System.out .println{ "\tMEAN INTERARRIVAL TIME "

+ MeanInterArrivalTime ) ;

System.out.println{ "\tMEAN SERVICE TIME "
+ MeanServiceTime ) ;

System.out.printlin{ "\tSTANDARD DEVIATION OF SERVICE TIMES "
+ SIGMA ) ;

System.out .printlin{ "\tNUMBER OF CUSTOMERS SERVED "
+ TotalCustomers ) ;

System.out.printin();

System.out .println( "\tSERVER UTILIZATION "
+ RHO ) ;

System.out.println( "\tMAXIMUM LINE LENGTH "
+ MaxQueuelLength ) ;

System.out.println/{ "\tAVERAGCE RESPONSE TIME "
+ AVGR + " MINUTES" };

System.out .printin( "\NtPROPORTION WHO SPEND FOUR ") ;

System.out .println{ "\t MINUTES OR MORE IN SYSTEM "
+ PC4

System.out.println( "\t3IMULATION RUNLENGTH "
+ Clock + " MINUTES" ;;

System.out.println( "\tNUMBER OF [EPARTURES "
+ TotalCustomers ) ;

Figure 4.7 Java report generator for the single-server queue simulation.
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public static double exponential (Random rng, double mean; {
return -mean*Math.log( rng.nextDouble() ) ;
1

I

public double Saveliormal;
public int MumNormals = O
public firal doubie FI = 23.14159%27 ;

public static double normal (Random rng, double mean, double sigma) |
double ReturnNormal;
// should we generate two normals?

if (NumNormals == o ) {
double rl1 = rng.nextDouble() ;
double r2 = rng.nextDouble!);
ReturnNormal = Math.sgrt(-2*Math.logirl))*Math.cos(2*PI*r2);
SaveNormal = Math.sggrt (-2*Math.log(rl))*Math.sin(2*PI*r2;
NumNormals = 1;
} else {
NumNormais = O;
ReturnNormal = SaveNormal;
}
return ReturnNormal*sigma - mean ;

Figure 4.8 Random-variate generators for the single-server queue simulation.

The techniques for generating exponentially and normally distributed random variates, discussed in Chapter 8,
are based on first generating a U(0.1) random number. For further explanation. the reader is referred to
Chapters 7 and 8.

The output from the grocery-checkout-counter simulation is shown in Figure 4.9. 1t should be empha-
sized that the output statistics are estimates that contain random error. The values shown are influenced by
the particular random numbers that happened to have been used. by the initial conditions at time 0, and by
the run length (in this case. 1000 departures). Methods for estimating the standard error of such estimates
are discussed in Chapter 11.

In some simulations. it is desired 1o stop the simulation after a fixed length of time. say TE = 12 hours =
720 minutes. In this case. an additional event type. stop event. is defined and is scheduled to occur by sched-
wling a stop event as part of simulation initialization. When the stopping event does occur, the cumulative

SINGLE SERVER QUEUE SIMULATION - GROCERY STORE CHECKOUT COUNTER

MEAN INTERARRIVAL TIME 4.5
MEAN SERVICE TIME 3.2
STANDARD DEVIATION OF SERVICE TIMES 0.6
NUMBEkK OF CUSTOMERS SERVED 1000
SERVER UTILIZATION 0.671
MAXIMUM LINE LENGTH 9.0
AVERAGE RESPONSE TIME 6.375 MINUTES
PROPORTION WHOC SPEND FOUR
MINUTES OR MORE IN SYSTEM 0.604
SIMULATION RUNLENGTH 4728.936 MINUTES
NUMBER CF DEPARTURES 1000

Figure 4.9 Output from the Java single-server queue simulation.
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statistics will be updated and the report generator called. The main program and method Initialization
will require minor changes. Exercise | asks the reader to make these changes. Exercise 2 considers balking of
customers.

4.5 SIMULATION IN GPSS

GPSS is a highly structured, special-purpose simulation programming language based on the process-interaction
approach and oriented toward queueing systems. A block diagram provides a convenient way to describe the
system being simulated. There are over 40 standard blocks in GPSS. Entities called transactions may be
viewed as flowing through the block diagram. Blocks represent events. delays. and other actions that affect
transaction flow. Thus. GPSS can be used to model any situation where transactions (entities. customers.
units of traffic) are tflowing through a system (e.g.. a network of queues, with the queues preceding scarce
resources). The block diagram is converted to block statements. control statements are added. and the result
is a GPSS model.

The first version of GPSS was released by IBM in 1961. It was the first process-interaction simulation
language and became popular: it has been implemented anew and improved by many parties since 1961. with
GPSS/H being the most widely used version in use today. Example 4.3 is based on GPSS/H.

GPSS/H is a product of Wolverine Software Corporation. Annandale, VA (Banks. Carson, and Sy. 1995:
Henriksen, 1999). It is a flexible, yet powerful tool for simulation. Unlike the original IBM implementation,
GPSS/H includes built-in file and screen 1/0, use of an arithmetic expression as a block operand. an inter-
active debugger, faster execution. expanded control statements, ordinary variables and arrays, a floating-
point clock, built-in math functions, and built-in random-variate generators.

The animator for GPSS/H is Proof Animation™. another product of Wolverine Software Corporation
(Henriksen. 1999). Proof Animation provides a 2-D animation. usually based on a scale drawing. It can run
in postprocessed mode (after the simulation has finished running) or concurrently. In postprocessed mode.,
the animation is driven by two files: the layout file for the static background. and a trace file that contains
commands to make objects move and produce other dynamic events. It can work with any simulation pack-
age that can write the ASCII trace file. Alternately, it can run concurrently with the simulation by sending
the trace file commands as messages, or it can be controlled directly by using its DLL (dynamic link library)
version.

Example 4.3: Single-Server Queue Simulation in GPSS/H
Figure 4.10 exhibits the block diagram and Figure 4.11 the GPSS program for the grocery-store checkout-
counter model described in Example 4.2. Note that the program (Figure 4.11) is a translation of the block
diagram together with additional definition and control statements.

In Figure 4.10, the GENERATE block represents the arrival event. with the interarrival times specified
by RVEXPO(1.&IAT). RVEXPO stands for “random variable. exponentially distributed.” the 1 indicates the
random-number stream to use. and &/AT indicates that the mean time for the exponential distribution comes
from a so-called ampervariable &IAT. Ampervariable names begin with the & character: Wolverine added
ampervariables to GPSS because the original IBM implementation had limited support for ordinary global
variables. with no user freedom for naming them. (In the discussion that follows, all nonreserved words are

shown in italics.)

The next block is a QUEUE with a queue named SYST/ME. 1t should be noted that the QUEUE block
is not needed for queues or waiting lines to form in GPSS. The true purpose of the QUEUE block is to work
in conjunction with the DEPART block to collect data on queues or any other subsystem. In Example 4.3,
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RVEXPO(1. & 1AT) GENERATE
GSTIME
e

/— QUEUE
LINE

R

SEIZE
/\
CKOUT

DEPART
/«

LINE

1
RVNORM(I. & MEAN. & STDEV)

CKOUT RELEASE
\/

/\ DEPART

SYSTIME
X

~ TEST
/ . TER
M1 GE 400

(No)
(Yes)
—_—

| & COUNT = | BLET
| & COUNT + 1

IR

Figure 4.10 GPSS block diagram for the single-server queue simulation.

ADVANCE

TERMINATE

we want to measure the system response time—that is. the time a transaction spends in the system. Placing
a QUEUE block at the point that transactions enter the system and placing the counterpart of the QUEUE
block. the DEPART block. at the point that the transactions complete their processing causes the response
times to be collected automatically. The purpose of the DEPART block is to signal the end of data collection
for an individual transaction. The QUEUE and DEPART block combination is not necessary for queues to
be modeled, but rather is used for statistical data collection.

The next QUEUE block (with name LINE ) begins data collection for the waiting line before the cashier.
The customers may or may not have to wait for the cashier. Upon arrival to an idle checkout counter. or after
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SIMULATE

*

* Define Ampervariables

*
INTEGER SLIMIT
REAL &IAT, &MEAN, &STDEV, &COUNT
LET &IAT=4.5
LET 3.2
LET &STDEV=.6
LET &LIMIT=1000

*

* Write Input Data tc File

*
PUTPIC FILE=OUT,LINES-5, {(&IAT, &MEAN, § STDEV, &LIMIT)
Mean interarrival time ¥ _%* rinutes
Mean service time *k  x% ninutes
Standard deviation of service time ** x* minutes
Number of customers to ke served it

*

* GPSS/H Block Section

*
GENERATE RVEXPO (1, &IAT) Exponential arrivals
QUEUE SYSTIME Begin response time data collection
QUEUE LINE Custorer joins waiting line
SEIZE CHECKOUT Begin checkcut at cash register
DEPART LINE Customer starting service leaves gueue
ADVANCE RVNORM {1, &MEAN, &STDEV) Customer’s service time
RELEASE CHECKOUT Customrer leaves checkout
DEFPART SYSTIME End response -ime data col
TEST GE M1,4,TER Is response t.me GE 4 minutes:
BLET &COUNT=&COUNT+1 If so, add 1 <o counter

TER TERMINATE 1

*
START &LIMIT Simulate for requirsd number

*

* Write Customized Output Data to File

«
PUTPIC FILE=OUT, LINES="7, (FR{CHECKOUT /10C0.QM{LINE), _
CT(SYSTIME) , «COUNT/N (TER) ,AC1,N(TER))
Server utilization A
Maximum line length *x
Average response tlime *k xx minutes
Proportion who spend four minutes A

or more in the system

Simulation runlength *xxx % minutes
Number of departures * kK

*

END

Figure 4.11

GPSS/H program for the single-server queue simulation.

advancing to the head of the waiting line. a customer captures the cashier. as represented by the SEIZE block
with the resource named CHECKOUT Once the transaction representing a customer captures the cashier
represented by the resource CHECKOUT. the data collection for the waiting-line statistics ends. as repre-
sented by the DEPART block for the queue named LINE. The transaction’s service time at the cashier is
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represented by an ADVANCE block. RVNORM indicates “random variable. normally distributed.” Again,
random-number stream 1 is being used. the mean time for the normal distribution is given by ampervariable
&MEAN. and its standard deviation is given by ampervariable & STDEV. Next. the customer gives up the use
of the facility CHECKOUT with a RELEASE block. The end of the data collection for response times is indi-
cated by the DEPART block tor the queue SYSTIME.

Nexto there is a TEST block that checks to see whether the time in the system, M1 is greater than or
equal to 4 minutes. (Note that M1 is a reserved word in GPSS/H: it automatically tracks transaction total
time in system.) In GPSS/H. the maxim is “if true. pass through.” Thus. if the customer has been in the SYs-
tem four minutes or longer. the next BLET block ifor block LET) adds one to the counter & COUNT. It not
true. the escape route is to the block labeled TER. That label appears before the TERMINATE block whose
purpose is the removal of the transaction from the system. The TERMINATE block has a value 17 indicat-
g that one more transaction is added toward the limiting value (or “transactions o go’).

The control statements in this example are all of those lines in Figure 4,11 that precede or follow the
block section. (There are eleven blocks in the model from the GENERATE block to the TERMINATE
block.) The control statements that begin with an ™57 are comments. some of which are used for spacing pur-
poses. The control statement SIMULATE tells GPSS/H to conduct a simulation: if it is omitted. GPSS/H
compiles the model and checks for errors only. The ampervariables are defined as integer or real by control
statements INTEGER and REALL Tt seems that the wmpervariable & COUNT should be defined as an inte-
gershowever it will be divided later by a real value. If it is integer. the result of an integer divided by a real
value is truncation. and that is not desired in this case. The tour assignment statements (LET) provide data
for the simulation. These four values could have been placed directly in the program: however. the preferred
practice is to place them in ampervariables at the top of the program so that changes can be made more cas-
11y or the model can be modified to read them trom a data file.

To ensure that the model data is correct. and for the purpose of managing different scenarios simulated.
iis good practice to echo the input data. This is accomplished with a PUTPIC (for “put picture™) control
statement. The five lines following PUTPIC provide formatting information. with the asterisks being mark-
ers (called picture formatting) in which the values of the four ampervariables replace the asterisks when
PUTPIC is executed. Thus, “indicates a value that may have two digits following the decimal point
and up to two before it

The START control statement controls simulation execution. It starts the simulation. sets up a
“termination-to-go™ counter with initial value its operand (&LIMIT ). and controls the length of the simulation.

After the simulation completes. a second PUTPIC control statement is used to write the desired output
datacto the same file OUT. The printed statistics are all gathered automatically by GPSS. The first output in
the parenthesized listis the server utilization. FRICHECKOUT )/1000 indicates that the fractional utilization
of the facility CHECKOUT is printed. Because FRICHECKOUT ) is in parts per thousand. the denominator
is provided to compute fractional utilization. QM(LINE ) is the maximum value in the queue LINE during
the simulation. QTrSYSTIME J is the average time in the queue SYSTIME. & COUNTIN(TER) is the number
ol customers who had a response time of four or more minutes divided by the number of customers that went
through the block with label TER. or N(TER). AC1 is the clock time. whose last value gives the length of the

simulation.

The contents of the custom output file OUT are shown in Figure 4.12. The standard GPSS/H output file
is displaved i Figure 4.13. Although much of the same data shown in the file OUT can be found in the stan-
dard GPSS/H output. the custom file is more compact and uses the language of the problem rather than GPSS
Jargon. There are many other reasons that customized output files are usetul. For example. if 50 replications
ol the model are to be made and the fowest. highest. and average value of a response are desired. this can be
accomplished by using control statements, with the results in a very compact form. rather than extracting the
desired values from 50 standard output files. '
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Mean interarrival time

1.50 minutces
Mean service time 3.2C mirutes
Standard deviaticon of service time 2.60 minutes
Number of customers to be served 1000
Server utilization J.676
Maximum line length 7
Average response time 6.33 minutes
Proportion who spend four minutes 0.646

or more in the system

Simulation runlength 4767.27 minutes
Number of departures 100C

Figure 4.12

Customized GPSS/H output report for the single-server queue simulation.

RELATIVE CLOCK: 4767.2740 ABSOLUTE CLOCK: 4767.0740
BLOCK CURRENT TOTAL BLCCK CURRENT TCTAL
1 1003 TER 000
2 1002
2 3 1002
4 1000
5 1000
5 1000
7 10060
2 1000
9 1000
10 6546
-~AVG-UTIL-DURING- -
FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPTING
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT

CHECKOUT 0.676 1000 3.224 AVAIL

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT >F SAVERAGE QTABLE CURRENT

CONTENTS CONTENTS ENTRIES ENTRIES ZEROS [IME/UNIT TIME,/UNIT NUMBEER CONTENT

SYSTIME 8 1.331 1903 0 6.325 6.235

LINE 7 0.655 1003 334 33.3 3.111 4.665
RANDCM ANTITHETIC INITIAL CURRENT SAMPLE CHI-SQUARE
STREAM VARIATES POSTTICN POSITION COUNT UNIFORMITY

1 OFF 100000 103004 3)C4 0.83

Figure 4.13 Standard GPSS/H output report for the single-server queue simulation.

4.6 SIMULATION IN SSF

The Scalable Simulation Framework (SSF) is an Application Program Interface (API) that describes a set of
capabilities for object-oriented. process-view simulation. The APLis sparse and was designed to allow imple-
mentations to achieve high performance (e.g. on parallel computers). SSF APIs exist for both C++and inJava,
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and implementations exist in both languages. SSF has a wide user base—particularly in network simulation
by using the add-on framework SSENet (www. ssfnet.org). Our chapter on network simulation uses
SSENet.

The SSE API defines tive base clusses. process is a class that implements threads of control: the
action method of a derived class contains the execution body of the thread. The Ent ity class is used o
deseribe simulation objects. It contains state variables. processes. and communication endpoints. The
inChannel and outChannel classes are communication endpoints. The Event class defines messages
sent between entities. One model entity communicates with another by “writing”™ an Event into an
outChannel: at some later time. it is available at one or more inChannels. A process that expects
mput on an inChannel can suspend. waiting for an event on it. These points. and others. will be clabo-
rated upon as we work through an SSF implementation of the single-server queue.

Source code given in Figure 4.14 expresses the logic of arrival generation in SSF for the single-server
queue example. The example is built on two SSE processes. One of these generates jobs and adds them to
the system: the other services the enqueued jobs. Class SSQueue is a class that contains the whole simula-
tion experiment. It uses the auxiliary classes Random (for random-number generation) and Queue (1o
implement FIFO queucing of general objects). SSQueua defines experimental constants (“public static
fnal™ types) and contains SSF communication endpoints out and in. through which the two processes
communicate. SSQueue also defines an inner class arrival. which stores the identity and arrival time off
cach job.

Class Arrivals is an SSF process. Its constructor stores the identity of the entity that owns it. and
creates a random-number generator that is initialized with the seed passed to it. For all but the initial call.
method action generates and enqueues a new arrival, then blocks (via SSF method wait For) for an
mter-arrival time: on the first call. it by-passes the job-generation step and blocks for an initial interarrival
time. The call 1o waitFor highlights details needing explanation. An SSQueue object calls the
Arrival constructor and is saved as the “owner” This class contains an auxiliary method exponen-
tial. which samples an exponential random variable with specificd mean by using a specified random-
number stream. It also contains methods d2t and t£2d that translate between a discrete “tick -based
integer clock and a double-precision floating-point representation. In the waitFor call. we use the same
code seen carlier to sample the exponential in double-precision format. but then use d2t to convert it into
the simulator’s integer clock format. The specific conversion factor is listed as a SSQueue constant.
107 ticks per unit time.

SSE interprocess communication is used sparingly in this example. Because service is nonpreemptive.
when a job’s service completes. the process providing service can examine the list of waiting customers (in
variable owner . Waiting) (o see whether it needs to give service to another customer. Thus. the only time
the server process needs to be told that there is a job waiting is when a job arrives to an empty system. This
is reflected in Arrivals.action by use of its owner’s out channel.

A last point of interest is that Arrivals is. in SSF terminology, a “simple™ process. This means
that every statement in action that might suspend the process would be the last statement executed
under normal execution semantics. The Arrivals class tells SSF that it is simple by overriding a
default method isSimple to return the value true. rather than the default value (false). The kev reason
for using simple processes is performance—they require that no state be saved. only the condition under
which the process ought to be reanimated. And. when it is reanimated. it starts executing at the first line
of action.

Figure 4.15 illustrates the code for the Server process. Like process Arrival, its constructor is
called by an instance of SSQueue and is given the identity of that instance and a random-number secd.
Like Arriwval. it is a simple process. It maintains state variable in_service to remember the
specifics of a job in service and state variable service time to remember the value of the service time
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SSF MODEL OF JOB ARRIVAL PROCESS
class SSQueue extends Entity ¢

vate static Randcm rng;

rriv

public static final double MeanServiceTime = 3.2;
public static final double SIGMA = 0.6;

puklic static final double MeanInterarrivalTime = 4.5;
public static final long ticksPerUnitTime = 1003000000C;

public long generated=0;
public Queue Waiting;
outChannel out;
inChannel in;

pubiic static long TotalCustomers=0, MaxQueuelLength=0, TotalServiceTime=0;
public static long LongResponse=0, SumResponseTime=0, jobStart;

class arrival {
long id, arrival time;
public arrival(long num, long a) { id=num; arrival_time = a; |
1
!
class Arrivals extends process {
private Random rng;
private SSQueue owner;
public Arrivals (SSQueue owner, iong seed) {
super {_owner); owner = _OWwner;
rng = new Random(seed:;
!
public boolean isSimple() { return true; )
public void action() {
if {( generated++ > 0 ) {
// put a new Customer on the gueue with the present arrival time
int Size = owner.Waiting.numElements();
owner.Waiting.enqueue( new arrival (generated, now()));
if! Size == 0) owner.out.write( new Event!) J; // signal start of burst
}
waitFor {owner.d2t{ owner.expconential {rng, cwner .MeanInterarrivalTime)) ) ;

Figure 4.14 SSF Model of Job-Arrival Process.

sampled for the job in service. When the SSF kernel calls action. either a job has completed service. or
the Arrival process has just signaled Server though the inChannel. We distinguish the cases by
looking at variable in service, which will be nonnull if a job is in service. just now completed.
In this case. some statistics are updated. After this task is done. a test is made for customers waiting for
service. The first waiting customer is dequeued from the waiting list and is copied into the in_service
variable: the process then samples a service time and suspends through a waitFor call. If no customer
was waiting, the process suspends on a waitOn statement until an event from the Arrival process
awakens it.

SSF bridges the gap between models developed in pure Java and models developed in languages specif-
ically designed for simulation. It provides the flexibility offered by a general-programming language. yet has
essential support for simulation.



SIMULATION SOFTWARE 109

// SSF MODEL OF SINGLE SERVER QUEUE

ACCEPTING JOBS
class Server extends proces

2]

private Random rng;
private SSQueue ocwner

private arrival in_service;

;

private long service time;

public Server (SSQ

ueue _owner, long seed!) {
super ( owner' ;

owner = _owner;
rmg = new Random(seed) ;
i
!
cublic boclean isSimple() { return true;
I {

public void actiont) |
7/ executes due to being idle and getting a job,
' if there is a job awalting service, take it
sample a service time,

or by service time expiraticn.
out of the gueue
do statist.cs, and waitr for

the service epoch
/it in_service is not null, we entered becauise of a job completion
if{ in_service ! = nuil 1} {

owner.TotalServiceTime += service time;

long in_system = (now(l -in service.arrival time!;
owner.SumResponseTime += in_systern;

it ( owner.tZd!in_system) > 4.C |

4. owner.LengResponse++;

in service = null;

if{ owner.MaxQueuelLength < cwner.waiting.numgZlements i) + 1
owner .MaxQueuelength = owner.Waiting.numElements(; + I;

i

owner.Tota.Customers++;

b

if{ owner.Waiting.numElements ' : = 0 ) {
in_service = f{arrival:owner.Waiting.dequeuell;
service_time = -

;

while ( service time < 0.0 )

.U

service_time = owner.d2t (owner.nmormal{ rng, ownexr.MeanServiceTime, owner.SIGMA!) ;

// model service time
waitFor{ service time );
) else |
waitOn! owner.in :; // we awalit a wake-up ca

Figure 4.15 SSF Model of Single-Server Queue : Server.

4.7 SIMULATION SOFTWARE

All the simulation packages described in later subsections run on a PC under Microsoft Windows 2000 or
XP. Although in terms of specifics the packages all differ. generally they have many things in common.
Common characteristics include a graphical user interface. animation, and automatically collected
outputs to measure system performance. In virtually all packages. simulation results may be displayed in
tubular or graphical form in standard reports and interactively while running a simulation. Outputs from
different scenarios can be compared graphically or in tabular form. Most provide statistical analyses that
include confidence intervals for performance measures and comparisons. plus a variety of other analysis
methods. Some of the statistical-analysis modules are described in Section 4.8,
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All the packages described here take the process-interaction worldview. A few also allow event-scheduling
models and mixed discrete—continuous models. For animation. somie emphasize scale drawings in 2-D or 3-D:
others emphasize iconic-type animations based on schematic drawings or process-flow diagrams. A few
offer both scale drawing und schematic-ty pe animations. Almost all ofter dynamic business graphing in the
form of time hines. bar charts. and pie charts,

In addition to the information contained in this chapter. the websites given below can be investigated:

Arena
www.arenasimulation.com/
AutoMod

r'ww . automod . com
Delmia/QUEST
www.delmia.comand www.3ds.com
Extend
www.imaginethatinc.com/
Flexsim

www.flexsim.com/

Micro Saint

www.maad . com

ProModel

www . promodel . com/

SIMULSY

Jww.simul8.com/

WITNESS

www.witness-for-simulacion.cor/

4.7.1 Arena

Arena Basic. Standard. and Professional Editions are offered by Svstems Modeling Corporation | Bapat and
Sturrock. 2003]. Arena can be used for simulating discrete and continuous systems. A recent addition o the
Arena family of products is OptQuest tor Arena. an optimization software package (discussed in Section 4.8.2.)

The Arena Basic Edition is targeted at modeling business processes and other systems in support of
high-level analysis needs. It represents process dynamics in a hicrarchical tflowchart and stores system
information in data spreadsheets. Tt has built-in activity-based costing and s closely integrated with the
flowcharting software Visio.

The Arena Standard Edition is designed for more detailed models of discrete and continuous systems.
First released in 1993, Arcna employs an object-based design for entirely graphical model development
Simulation models are built from graphical objects called modules to define system logic and sach physical
components as machines, operators. and clerks. Modules are represented by icons plus associated data entered
in a dialog window. These icons are connected to represent entity flow. Modules are organized into collections
called templates. The Arena template is the core collection of modules providing general-purpose features for
modeling all types of applications. In addition to standard features. such as resources. queues. process logic.
and system data. the Arena template includes modules focused on specific aspects of manafacturing and mate-
rial-handling systems. Arena SE can also be used to model combined discrete/continuous systems. such as
pharmaceutical and chemical production. through its built-in continuous-modeling capabilities.

The Arena Professional Edition enhances Arena SE with the capability o craft custom simulation
objects that mirror components of the real system. including terminology. process logic. data. performance
metrics. and animation. The Arena family also includes products designed specifically to model call centers
and high-speed production lines. namely Arena Contact Center and Arena Packaging.
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At the heart of Arena is the SIMAN simulation language. For animating simulation models, Arena’s
core modeling constructs are accompanied by standard graphics for showing queues. resource status. and
entity flow. Arena’s 2-D animations are created by using Arena’s built-in drawing tools and by incorporating
clip art. AutoCAD. Visio. and other graphics,

Arena’s Input Analyzer automates the process of selecting the proper distribution and its parameters for
representing existing data. such as process and interarrival times. The Output Analyzer and Process Analy zer
tdiscussed in Section 4.8.2) automate comparison of ditfercnt design alternatives.

4.7.2 AutoMod

The AutoMod Product Suite is offered by Brooks Automation {Rohrer. 20031, It includes the AutoMod
simulation package, AutoStat for experimentation and analysis. and AutoView for making AVI movies of the
built-in 3-D animation. The main focus of the AutoMod simulation product is manufacturing and material-
handling systems. AutoMod's strength is in detailed. large models used for planning. operational decision
support. and control-systems testing.

AutoMod has built-in templates for most common material-handling systems. including vehicle
systems, conveyors, automated storage and retrieval systems., bridge cranes. power and free conveyors. and
Kinematies for robotics. With its Tanks and Pipes module, it also supports continuous modeling ot fluid and
bulk-material flow,

The pathmover vehicle system can be used to model lift trucks. humans walking or pushing carts. auto-
mated guided vehicles. trucks. and cars. All the movement templates are based on a 3-D scale drawing
(drawn or imported trom CAD as 2-D or 3-D). All the components of a template are highly parameterized.
For example. the conveyor template contzins conveyor sections, stations for load induction or removal.
motors, and photo-eyes. Sections are defined by length, width. speed. acceleration. and type (accumulating
or nonaccumulating). plus other specialized parameters. Photo-eves have blocked and cleared timeouts that
facilitate modeling of detailed convevor logic.

In addition to the material-handling templates. AuteMod contains a full simulation programming
language. Its 3-D animation can be viewed from any angle or perspective in real time. The user can freely
soom, pan, or rotate the 3-D world.

An AutoMod model consists of one or more systems. A system can be either a process system. in which
flow and control Togic are defined. or a movement system based on one of the material-handling templates.
A model may contain any number of systems. which can be saved and reused as objects in other models.
Processes can contain complex logic to control the flow of either manufacturing materials or control
messages, (o contend for resources, or to wait for user-specitied times. Loads can move between processes
with or without using movement systems.

In the AutoMod worldview. loads (products. parts, cte.r move from process o process and compete for
resources (equipment. operators, vehicles, and queues). The load is the active entity. executing action state-
ments in cach process. To move between processes, foads may use a conveyor or vehicle in a movement
system.

AutoStat. described in Section 4.8.2. works with AutoMod models to provide a complete environment
for the user o define scenarios, conduct experimentation. and perform analyses. It ofters optimization based
on an evolutionary strategies algorithm.,

4.7.3 Extend

Fhe Extend family of products is offered by Imagine That. Inc. [Krahl. 2003]. Extend OR. Industry. and
Suite are used for simulating discrete and mixed discrete—continuous systems; Extend CP is for continuous
madeling only. Extend combines a block-diagram approach to model-building with a development environment
tor ¢reating new blocks.
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Each Extend block has an icon and encapsuiates code. parameters. user interface. animation. and online
help. Extend includes a large set of elemental blocks: libraries of blocks for specific application arcas. such
as manufacturing, business processes. and high-speed processes. are also available. Third-party developers
have created Extend libraries for vertical market applications. including supply-chain dynamics. reliability
engineering. and pulp and paper processing.

Models are built by placing and connecting blocks and entering the parameters on the block™s dialog
window. Elemental blocks in Extend inctude Generator. Queue. Activity. Resource Pool. and Exit. The active
entities. called items in Extend. are created at Generator blocks and move from block to block by way of
item connectors. Separate value connectors allow the attachment of a caleulation to a block parameter or the
retrieval of statistical information for reporting purposes. Input parameters can be changed interactively during
a mode! run and can come from external sources. Outputs are displayed dynamically and in graphical and
tabular format. The Industry and Suite products also provide an embedded database tor centralized infor-
mation management.

Extend provides iconic process-flow animation of the block diagram. For scaled 2-D animation. Proot
Animation [Henriksen. 20021 from Wolverine Software is included in the Suite product. Collections of
blocks representing a submodel. such as o subassembly line or functional process. can be grouped into a hier:
archical block on the model worksheet: hicrarchical blocks can also be stored in a library for reuse
Parameters from the submodel can be grouped and displayed at the level of the hierarchical block for access
o model /0. Extend supports the Microsoft component object model (COM/ActiveX). open database con-
nectivity (ODBC). and Internet data exchange. Activity-based costing. statisticai analysis of output data with
confidence intervals, and the Evolutionary Optimizer are included.

For creating new blocks. Extend comes with a compiled C-like programming environment. The mes-
sage-based language includes simulation-specific functions and supports custom interface development.
Extend has an open architecture: in most cases. the source code tor blocks is available Tor custom develop-
ment. The architecture also supports linking to and using code and routines written in external languages.

4.7.4 Flexsim

Flexsim simulation software is developed and owned by Flexsim Software Products. Inc. ot Orem. Utah
(Nordgren. 2003). Flexsim is a discrete-event. object-oriented simulator developed in C++. using Open Gl
technology. Animation can be shown in tree view, 2-D. 3-D.and virtual reality. All views can be shown con-
currently during the model development of run phase. It integrates Microsoft's Visual C++ 1DE and com-
piler within a graphical 3-D click-and-drag simulation environment.

Flexsim software is used to build models that behave like the actual physical or conceptual systems they
represent. A simulation model of any flow system or process can be ereated in Flexsim by using drag-and-
drop model-building objects.

Flexsim is used to improve production efficiencies and reduce operating costs through simulation.
experimentation. and optimization ot dynamic flow systems. Engineers and managers use Flexsim to evalu-
ate plant capacity. balance packaging and manufacturing lines. manage bottenecks. solve work-in-process
problems. justify capital expenditures. plan equipment maintenance schedules. establish proper inventory
levels. improve order-picking systems. and optimize production rates. Flexsim allows end users to introduce
and simulate new conditions tor the model and o analyrze their etfects and results in order to find ways to
improve the system being studied. By using Flexsim. efficiencies—increased throughput and decreased
costs—can be identitied. tested. and proven prior to implementing them m the actual system. The results of
cach simulation can be analyzed graphically through 3-1 animation and through statistical reports and
araphs. which are all also useful in communicating a model’s purpose and results to both technical and
nontechnical audiences.,
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4.7.5 Micro Saint

Micro Saint is offered by Micro Analysis and Design, Inc. |Bloechle and Schunk, 2003]. Micro Saint is a
general-purpose, discrete-event, network simulation-software package for building models that simulate
real-life processes. With Micro Saint models. users can gain useful information about processes that might
be too expensive or time-consuming to test in the real world

Micro Saint does not use the terminology or graphic representations of a specific industry. A Micro Saint
model can be built for any process that can be represented by a flowchart diagram. The terms that are used
are defined by the user. In addition, the icons and background for the ActionView animation and the flow-
charting symbols are customizable. Micro Saint provides two views of the simulation model. The network
diagram view shows the process flowchart in action, and ActionView provides a realistic 2-D picture of the
process.

Micro Saint supports the development of models of various complexity to match the user’s needs.
Simple, functional models can be built by drawing a network diagram and filling in the task-timing infor-
mation. More complex models can also be built that include dynamically changing variables. probabilistic
and tactical branching logic, sorted queues. conditional task execution. animation. optimization, and exten-
sive data collection.

A separate module (called COM Services) is available that enables Micro Saint to exchange data with
other software applications and makes it easy to customize the model. In addition. OptQuest optimization is
included with Micro Saint and is designed to automatically scarch for and find optimal or near-optimal solu-
tons to the model.

4.7.6 ProModel

ProModel is offered by PROMODEL Corporation [Harrell. 2003]. It is a simulation and animation tool
designed to model manufacturing systems. The company also offers MedModel for healthcare systems and
ServiceModel for service systems. ProModel offers 2-D animation with an optional 3-D like perspective
view. ProModel’s animation is generated automatically as the model is developed.

ProModel has manufacturing-oriented modeling elements and rule-based decision logic. Some systenis
can be modeled by selecting from ProModel’s set of highly parameterized modeling elements. In addition,
its simulation programming language provides for modeling special situations not covered by the built-in
choices.

The modeling elements in ProModel are parts (entities), locations. resources, path networks, routing and
processing logic, and arrivals. Parts arrive and follow the routing and processing logic from location to loca-
tion. Resources are used to represent people. tools. or vehicles that transport parts between locations, per-
tform an operation on a part at a location, or perform maintenance on a location or other resource that is
down. Resources may travel on path networks with given speeds. accelerations, and pickup and setdown
travel times. The routing and processing element allows user-defined procedural logic in ProModel’s simu-
lation-programming language.

ProModel includes logic for automatically generating cost data associated with a process. Costs can be
added for location usage, resources, and entities.

ProModel comes complete with an output viewer, allowing for straightforward data presentation and
usetul graphics and charts, such as state diagrams.

ProModel’s runtime interface allows a user to define multiple scenarios for experimentation. SimRunner
(discussed in Section 4.8.2) adds the capability to perform an optimization. It is based on an evolutionary-
strategy algorithm, a variant of the genetic algorithm approach. The OptQuest Optimizer (OptQuest for
ProModel) is available as an add-on product.
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4.7.7 QUEST

QUEST* is oftered by Delmia Corp. QUEST (Queuing Event Simulation Tool) is @ manufacturing-oriented sim-
ulation package. QUEST combines an object-based. true 3-D simulation environment with a graphical user
interiace and material-flow modules for modeling labor. conveyors. automated guided vehicles, kinematic
devices. cranes. fluids, power and free conveyors, and automated storage and retrieval systems. QUEST
models incorporate 2-D and 3-D CAD geometry to create a virtual factory environment.

Delmia also offers a number of workcell simulators. including IGRIP* for robotic simulation and pro-
gramming and ERGO™ for ergonomic analyses. Robots and human-based workcells that are simulated in
IGRIP and ERGO can be umported into QUEST models both visually and numerically.

Delmia provides even further integration with QUEST and other manufacturing technologies through
PROCESS ENGINEER™. Delmia’s process-planning environment. The Manufacturing Hub infrastructure
behind this software consists of an object-oriented database for storing Product, Process, and Resource
objects that are contiguration-managed and effectivity-controlled. A QUEST model is automatically created
from the information stored in the database, and the resulting model can be linked to the database for auto-
matic update purposes. QUEST can be used to introduce and update resource-specitic information and model
output results into the Manufacturing Hub tor use in other products.

A QUEST model consists of elements from a number of element classes. Built-in element classes
include AGVs and transporters, subresources, bufters, conveyors. power and free systems, labor. machines.
parts, container parts, and processes. Each element has associated geometric data and parameters that define
its behavior. Parts may have a route and control rules to govern part flow. Commonly needed behavior logic
1s selected from comprehensive menus. many parameter-driven.

For unique problems. Delmia’s QUEST Simulation Contrel Language (SCL) can be used. This struc-
tured simulation-programming language provides distributed processing with access to all system variables.
SCL allows expert users to define custom behaviors and to gain control over the simulation.

Delmia QUEST's open architecture allows the advanced user to perform batch simulation runs to auto-
matically collect and tabulate data by using the Batch Control Language (BCL). Replications and parameter
optimization are controlled with batch command files or by the OptQuest optimization software, as described
in Scction 4.8.2.

Output is available both numerically (with the statistical reporting mechanisms) and visually (with a
resulting virtual factory-like animation). Statistical output results are available internally through the graph-
ical user mtertace or externally through HTML and can be customized by using XML or QUEST’s own
BCL. Digital movies can be created from the animation, or a read-only encrypted version of the model can
be authored for viewing and experimentation in QUEST Express™. a “lite” version of QUEST.

4.7.8 SIMUL8

SIMULS is provided by SIMULS Corporation and was first introduced in 1995. In SIMULS, models are created
by drawing the flow of work with the computer mouse. using & series of icons and arrows to represent the
resources and queues in the system. Detault values are provided for all properties of the icons, so that the
animation can be viewed very early in the modeling process. Drilling down in property boxes opens up
progressively more detailed properties. The main focus of SIMULS is service industries where people are
processing transactions,

Like some other packages, SIMULS has the concepts of “Templates™ and “Components.” Templates, or
prebuilt simulations. focus on particular recurring decision types that can be quickly parameterized to fit a
specific company issue. Components are user-defined icons that can be reused and shared across a company’s
simulations. This reduces the time to build simulations, standardizes how some situation are handled across
a corporation. and often removes much of the data-collection phase of a simulation study.
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SIMULS Corporation’s approach to business is ditferent from most of the other packages here in that
they claim to be aiming to spread simulation very widely across businesses. rather than concentrate it in the
hands of dedicated and highly trained simulation professionals. This means they have very different pricing
and support policies, but it also means the software has to contain features that watch how the product is
being used and provide assistance if some potentially invalid analysis is conducted.

SIMULS saves its simulation model and data in XML format so that it will be casy to transfer it to and
from other applications. It provides some nonsimulation features that make it possible for the model-builder
to create custom user interfaces in spreadsheet. dialog. or wizard form. SIMULSR has a VBA interface and
supports ActiveX/COM so that external applications can build and control SIMULS simulations.

The product is available in two levels, Standard and Professional. The two levels provide the same sim-
ulation features, but Professional adds 3-D. Virtual Reality” views of the simulation, and database links to
corporate databases and has certain features that are likely to be useful only to full-time simulation modelers.
SIMULS Professional comes with a license to distribute simulations with a free SIMULS Viewer.

4.7.9 WITNESS

WITNESS is offered by the Lanner Group and has separate versions for manufacturing and service indus-
tries. It contains many elements for discrete-part manufaciuring and also contains elements for continuous
processing, such as the flow of fluids through processors. tanks. and pipes.

WITNESS models are based on template elements. These may be customized and combined into mod-
ule elements and templates for reuse. The standard machine clements can be single. batch. production.
assembly. multistation, or multicycle. Other discrete modeling elements include multiple types of conveyor,
tracks, vehicles. labor, and carricers. The behavior of each element is described on a tabbed detail form in the
WITNESS user interface.

The models are displayed in a 2-D layout animation with multiple windows and display layers: there are
optional process-flow displays and element-routing overlays. Models can be changed at any point in a model
run and saved at any run point for future reload.

Optional WITNESS modules include WITNESS VR, an integrated virtual reality 3-D view of the work-
ing model, where there is full mouse control of the camera flight and position. Options exist, to. for post-
processed VR with multiscreen projection and various headset technologies. Other WITNESS modules include
links to CAD systems, a model documentor, and the WITNESS Optimizer outlined in the section below.

WITNESS has object-model and ActiveX control for simulation embedding and includes direct data
links to Microsoft Excel, MINITAB. and any OLEDB database source. XML data format saves offer addi-
tional linkage functionality.

4.8 EXPERIMENTATION AND STATISTICAL-ANALYSIS TOOLS
4.8.1 Common Features

Virtually all simulation packages offer various degrees of support for statistical analysis of simulation out-
puts. In recent years. many packages have added optimization as one of the analysis tools. To support analy-
sis, most packages provide scenario definition. run-management capabilities. and data export to spreadsheets
and other external applications.

Optimization is used to find a “"near-optimal™ solution. The user must define an objective or fitness func-
tion, usually a cost or cost-like function that incorporates the trade-off between additional throughput and
additional resources. Until recently. the methods available for optimizing a system had ditficulty coping with
the random and nonlinear nature of most simulation outputs. Advances in the field of metaheuristics have
offered new approaches to simulation optimization. ones based on artificial intelligence. neural networks.
venetic algorithms, evolutionary strategies. tabu search. and scatter search.
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4.8.2 Products

This section briefly discusses Arena’s Output and Process Analyzer, AutoStat for AutoMod, OptQuest
(which is used in a number of simulation products) and SimRunner for ProModel.

Arena’s Output and Process Analyzer

Arena comes with the Output Analyzer and Process Analyzer. In addition, Arena uses OptQuest for
optimization.

The Output Analyzer provides contidence intervals, comparison of multiple systems, and warm-up
determination to reduce initial condition biases. It creates various plots, charts. and histograms, smoothes
responses, and does correlation analysis. To compute accurate confidence intervals, it does internal batching
(both within and across replications. with no user intervention) and data truncation to provide stationary.
independent. and normally distributed data sets.

The Process Analyzer adds sophisticated scenario-management capabilities to Arena for comprehensive
design of experiments. It allows a user to define scenarios. make the desired runs, and analyze the results. Tt
allows an arbitrary number of controls and responses. Responses can be added after runs have been com-
pleted. It will rank scenarios by any response and provide summaries and statistical measures of the
responses. A user can view 2-D and 3-D charts of response values across either replications or scenarios.

AutoStat

AutoStat is the run manager and statistical-analysis product in the AutoMod product family [Rohrer, 2003].
AutoStat provides a number of analyses. including warm-up determination for steady-state analysis, absolute
and comparison confidence intervals. design of experiments. sensitivity analysis, and optimization via an
evolutionary strategy. The evolutionary-strategies algorithm used by AutoStat is well suited to finding a near-
optimal solution without getting trapped at a local opimum.

With AutoStat, an end user can define any number of scenarios by detining factors and their range of
values. Factors include single parameters. such as resource capacity or vehicle speed; single cells in a data
tile: and complete data files. By allowing a data file to be a factor. a user can experiment with, for example.
alternate production schedules. customer orders for different days. different labor schedules, or any other
numerical inputs typically specified in a data file. Any standard or custom output can be designated as a
response. For each defined response. AutoStat computes descriptive statistics (average, standard deviation.
minimum. and maximum) and confidence intervals. New responses can be defined after runs are made.
because AutoStat archives and compresses the standard and custom outputs from all runs. Various charts and
plots are available to provide graphical comparisons.

AutoStat supports correlated sampling (see Chapter 12) using common random numbers. This sampling
technique minimizes variation between paired samples. giving a better indication of the true effects of model
changes.

AutoStat is capable of distributing simulation runs ucross a Jocal area network and pulling back all
results to the user’s machine. Support for multiple machines and CPU’s gives users the ability to make many
more runs of the simulation than would otherwise be possible. by using idle machines during oft hours. This
is especially useful in multitactor analysis and optimization, both of which could require large numbers of
runs. AutoStat also has a diagnostics capability that automatically detects “unusual” runs, where the defini-
tion of “unusual™ is user-definable.

AutoStat also works with two other products from AutoSimulations: the AutoMod Simulator, a spread-
sheet-based job-shop simulator: and AutoSched AP. a rule-based simulation package for finite-capacity
scheduling in the semiconductor industry.
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OptQuest

OptQuest® was developed by Dr. Fred Glover of the University of Colorado, cofounder of OptTek Systems,
Inc. [April et al., 2003].

OptQuest is based on a combination of methods: scatter search, tabu search. linear/integer program-
ming. and neural networks. Scatter search is a population-based approach where existing solutions are com-
bined to create new solutions. Tabu search is then superimposed to prohibit the search from reinvestigating
previous solutions, and neural networks screen out solutions likely to be poor. The combination of methods
allows the search process to escape local optimality in the quest for the best solution.

Some of the differences between OptTek's methods and other methods include

* the ability to avoid being trapped in locally optimal solutions to problems that contain nonlinearitics
(which commonly are present in real-world problems):

~* the ability to handle nonlinear and discontinuous relationships that are not specifiable by the kinds of
equations and formulas that are used in standard mathematical programming formulations:

* the ability to solve problems that involve uncertainties. such as those arising from uncertain supplies.
demands, prices, costs. flow rates. and queuing rates.

SimRunner

SimRunner was developed by PROMODEL Corporation out of the simulation-optimization research of
Royce Bowden, Mississippi State University [Harrell er al.. 2003]. It is available for ProModel. MedModel.
and ServiceModel.

SimRunner uses genetic algorithms and evolution strategies. which are variants of evolutionary algorithms.
Evolutionary algorithms are population-based direct-search techniques. A user first specifies input factors
(integer or real-valued decision variables) composed of ProModel macros and then specifies an objective
function composed of simulation-output responses. SimRunner manipulates the input factors within boundaries
specified by the user seeking to minimize. to maximize. or to achieve a user-specified target value for the
objective function. The optimization-output report includes a confidence interval on the mean value of the
objective function for each solution evaluated over the course of the optimization and displays 3-D plots of
the simulation’s output-response surface for the solutions evaluated. In addition to the multivariable
optimization module, SimRunner has a utility for helping users estimate the end of the warm-up phase
(initialization bias) of a steady-state simulation and the number of replications needed to obtain an estimate of
the objective function’s mean value to within a specified percentage error and confidence level.
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EXERCISES

For the exercises betow, reader should code the model in a general-purpose language (such as C. C++, or
Java). a special-purpose simulation language (such as GPSS/H). or any desired simulation package.

Most problems contain activities that are uniformly distributed over an interval [a.b]. Assume that all
values between « and b are possible: that is. the activity time is & continuous random variable.

The uniform distribution is denoted by U (a. b). where ¢ and b are the endpoints of the interval, or by m £ /.
where 1 is the mean and # is the “spread” of the distribution. These four parameters are related by the equations

a+bh b—a
m= —— h=
9

~

a=m—-h b=m+h

Some of the uniform-random-variate generators available require specification of « and b; others require
m and h.

Some problems have activities that are assumed to be normally distributed, as denoted by N(u. cl).
where g1 is the mean and o the variance. (Since activity times are nonnegative. the normal distribution is
appropriate only if g > ko. where & is at least 4 and preferably 5 or larger. If a negative value is generated. it
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is discarded.) Other problems use the exponential distribution with some rate A or mean I/A. Chapter 5
reviews these distributions: Chapter 8 covers the generation of random variates having these distributions.
All of the languages have a facility to easily generate samples from these distributions. For C. C++. or Java
simulations, the student may usc the functions given in Section 4.4 for generating samples from the normal
and exponential distributions.

1.

w

10.

11

Make the necessary modifications to the Java model of the checkout counter (Example 4.2) so that the
simulation will run for exactly 60 hours.

In addition to the changes in Exercise 1, assume that an arriving customer does not join the queue if
three or more customers are waiting for service. Make necessary changes to the Java code and run the
model.

Implement the changes in Exercises | and 2 in any of the simulation packages.

Ambulances are dispatched at a rate of one every 15 £ 10 minutes in a large metropolitan area. Fifteen
percent of the calls are false alarms. which require 12 £ 2 minutes to complete. All other calls can be
one of two kinds. The first kind are classified as serious. They constitute 155 of the non-false alarm
calls and take 25 £ 5 minutes to complete. The remaining calls take 20 + [0 minutes to complete.
Assume that there are a very large number of available ambulances. and that any number can be on call
at any time. Simulate the system until 500 calls are completed.

In Exercise 4, estimate the number of ambulances required to provide 100% service.

(a) In Exercise 4, suppose that there is only one ambulance available. Any calls that arrive while the
ambulance is out must wait. Can one ambulance handle the work load?

(b) Simulate with x ambulances. where x = 1.2.3. or 4, and compare the alternatives on the basis of length
of time a call must wait, percentage of calls that must wait. and percentage of time the ambulance
is out on call.

Passengers arrive at the security screening arca at Chattahoochee Airport according to a time given by
N(20, 3) seconds. At the first point. the boarding pass and ID are checked by one of two people in a time
that is distributed N(12. 1) seconds. (Passengers always pick the shortest line when there is an option.)
The next step is the X-ray area which takes a time that is N¢153, 2) seconds: there are two lanes open at
all times. Some 15% of the people have to be rechecked for a time that N(100. 10) seconds. The number of
recheckers needed is to be determined. Simulate this system for eight hours with one and two recheckers.

A superhighway connects one large metropolitan area to another. A vehicle leaves the first city every
20 + 15 seconds. Twenty percent of the vehicles have 1 passenger, 30% of the vehicles have 2 passengers.
10% have 3 passengers, and 10% have 4 passengers. The rematning 30% of the vehicles are buses.
which carry 40 people. It tukes 60 £ 10 minutes for a vehicle to travel between the two metropolitan
arcas. How long does it take for 5000 people to arrive in the second city?

A restaurant has two sections, that is, meals section and tiffin section. Customers arrive at the restaurant
at the rate of one every 60 + 30 seconds. Of the arriving customers. 50% take only tiffin and 50% take
only meals. Immaterial of the type of the customer. it takes 75 £ 40 seconds 1o provide service. Assuming
that there arc sufficient number of servers available, determine the time taken to serve 100 customers.

Re-do Exercise 9. assuming that of the arriving customers, 50% take only tiftin. 30% take only meals.
and the remaining 20% take a combinution of meals and uffin.

For Exercise 10, what is the maximum number of servers needed during the course of simulation?
Reduce the number of servers one by one and determine the total time to complete 100 services.
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12. Customers arrive at an Internet center at the rate of one every 15 = 5 minutes. 80% of the customers
check simply their email inbox. while the remaining 20% download and upload files. An email customer
spends 5 + 2 minutes in the center and the download customer spends 15 £ 5 minutes. Simulate the service
completion of 500 customers. Of these 500 customers. determine the number of email and download
customers and compare with the input percentage.

13. An airport has two concourses. Concourse | passengers arrive at a rate of one every 15 + 2 seconds.
Concourse 2 passengers arrive at a rate of one every 10 £ S seconds. It takes 30 £ 5 seconds to walk
down concourse | and 35 + 10 seconds to walk down concourse 2. Both concourses empty into the main
lobby, adjacent to the baggage claim. It takes 10 £ 3 seconds to reach the baggage claim area from the
main lobby. Only 60% of the passengers go to the baggage claim area. Simulate the passage of 500 pas-
sengers through the airport system. How many of these passengers went through the baggage claim
area? In this problem, the expected number through the baggage claim area can be computed by
0.60(500)=300. How close is the simulation estimate to the expected number? Why the difference?

14. In a multiphasic screening clinic. patients arrive at a rate of one every 5 + 2 minutes to enter the audi-
ology section. The examination takes 3 = | minutes. Eighty percent of the patients were passed on to
the next test with no problems. Of the remaining 20%. one-half require simple procedures that take 2 +
I minutes and are then sent for reexamination with the same probability of failure. The other half are
sent home with medication. Simulate the system to estimate how long it takes to screen and pass 200
patients. (Nore: Persons sent home with medication are not considered “passed.”™)

15. Consider a bank with four tellers. Tellers 3 and 4 deal only with business accounts: Tellers 1 and 2 deal
only with general accounts. Clients arrive at the bank at a rate of one every 3 * I minutes. Of the clients.
33% are business accounts. Clients randomly choose between the two tellers available for each type of
account. (Assume that a customer chooses a line without regard to its length and does not change lines.)
Business accounts take 15 £ 10 minutes to complete. and general accounts take 6 = 5 minutes to com-
plete. Simulate the system for 500 transactions to be completed. What percentage of time is each type
of teller busy? What is the average time that each type of customer spends in the bank?

16. Repeat Exercise 15, but assuming that customers join the shortest line for the teller handling their type

of account.

17. In Exercises 15 and 16. estimate the mean delay of business customers and of general customers. (Delay
is time spent in the waiting line. and is exclusive of service time.) Also estimate the mean length of the
waiting line, and the mean proportion of customers who are delayed longer than 1 minute.

18. Three ditferent machines are available for machining a special type of part for 1 hour of each day. The
processing-time data is as follows:

' )
| Machine Time to Machine One Part
| 20 + 4 seconds
2 10 £ 3 seconds
3 15 £ 5 seconds

Assume that parts arrive by conveyor at a rate of one every 15 + 5 seconds for the first 3 hours of the
day. Machine 1 is available for the first hour, machine 2 for the second hour. and machine 3 for the third
hour of each day. How many parts are produced in a day? How large a storage area is needed for parts
waiting for a machine? Do parts “pile up™ at any particular time? Why?



SIMULATION SOFTWARE 121

19.

26.

People arrive at a self-service cafeteria at the rate of one every 30 £ 20 seconds. Forty percent go to the
sandwich counter, where one worker makes a sandwich in 60 = 30 seconds. The rest go to the main
counter, where one server spoons the prepared meal onto a plate in 45 + 30 seconds. All customers must
pay a single cashier, which takes 25 £ 10 seconds. For all customers, eating takes 20 + 10 minutes. After
cating, 10% of the people go back for dessert. spending an additional 10 £ 2 minutes altogether in the
cafeteria. Simulate until 100 people have Teft the cafeteria. How many people are left in the cafeteria.
and what are they doing, at the time the simulation stops?

Customers arrive at a nationalized bank at the rate of one every 60 = 40 scconds. 60% of the customers
perform money transactions and the remaining 40% do other things such as getting the draft. updating
passbooks. etc., which require 3 £ 1 and 4 £ | minutes, respectively. Currently. there are separate coun-
ters for both the activities. Customers feel that if single window concept is introduced. average waiting
time could be reduced. Justity by simulating 200 arrivals.

In Exercise 20. in single window systen, if an arriving customer balks if three or more customers are
the queue, determine the number of customers balked in cach category.

Loana Tool Company rents chain saws. Customers arrive to rent chain saws at the rate of one every
30 + 30 minutes. Dave and Betty handle these customers. Dave can rent a chain saw in 14 + 4 minutes.
Betty takes 10 + 5 minutes. Customers returning chain saws arrive at the same rate as those renting chain
saws. Dave and Betty spend 2 minutes with a customer to check in the returned chain saw. Service is
first-come-first-served. When no customers are present, or Betty alone is busy, Dave gets these returned
saws ready for rerenting. For each saw. this maintenance and cleanup takes him 6 + 4 minutes and 10 £ 6
minutes, respectively. Whenever Dave is idle. he begins the next maintenance or cleanup. Upon finishing
a maintenance or cleanup. Dave begins serving customers if one or more is waiting. Betty is always
available for serving customers. Simulate the operation of the system starting with an empty shop at
8:00 a.m., closing the doors at 6:00 pM., and getting chain saws ready for re-renting until 7:00 P,
From 6:00 until 7:00 .., both Dave and Betty do maintenance and cleanup. Estimate the mean delay
of customers who are renting chain saws.

The Department of Industrial Engineering of a university has one Xerox machine. Users of this machine
arrive at the rate of one every 20 + 2 minutes and use it for 15 = 10 minutes. If the machine is busy,
90% of the users wait and finish the job, while the 10% of the users come back after 10 minutes. Assume
that they do not balk again. Simulate for 500 customers and find out the probability that a balking
customer need not wait during the second attempt.

Go Ape! buys a Banana Il computer to handle all of its web-browsing needs. Web-browsing emplovees
arrive every 10 £ 10 minutes to use the computer. Web-browsing takes 7 + 7 minutes. The monkeys that
run the computer cause a system failure every 60 £ 60 minutes. The failure lasts for 8 + 4 minutes. When
a failure occurs. the web-browsing that was being done resumes processing from where it was left off.
Simulate the operation of this system for 24 hours. Estimate the mean system response time. (A system
response time is the length of time from arrival until web-browsing is completed.) Also estimate the mean
delay for those web-browsing employees that are in service when a computer system failure occurs.

Able, Baker, and Charlie are three carhops at the Sonic Drive-In (service at the speed of sound! ). Cars
arrive every 5 £ 5 minutes. The carhops service customers at the rate of one every 10 + 6 minutes.
However, the customers prefer Able over Baker, and Baker over Charlie. If the carhop of choice is busy.
the customers choose the first available carhop. Simulate the svstem for 1000 service completions,
Estimate Able’s. Buker's, und Charlie’s utilization (percentage of time busy).

Jiffy Car Wash is a five-stage operation that takes 2 + 1 minutes for each stage. There is room for 6 cars
to wait to begin the car wash. The car wash facility holds 5 cars, which move through the system in
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27.

28.

29.

order. one car not being able to move until the car ahead of it moves. Cars arrive every 2.5 £ 2 minutes
tor a wash. If the car cannot get into the system. it drives across the street to Speedy Car Wash. Estimate
the balking rate per hour. That is. how many cars drive oft per hour? Simulate for one 12-hour day.

Consider the three machines A, B. and C pictured below. Arrivals of parts and processing times are as
indicated (times in minutes).

100 + 10 A
_—

90 = 15

C
———
3t6

10+6 B
—_ " ~

85

Machine A processes type I parts, machine B processes type /1 parts, and machine C processes both
types of parts. All machines are subject to random breakdown: machine A every 400 £ 350 minutes with
a down time of 15 + 14 minutes, machine B every 200 £ 150 minutes with a downtime of 10 + 8 min-
utes, and machine C almost never. so its downtime is ignored. Parts from machine A are processed at
machine C as soon as possible. ahead of any type /I parts from machine B. When machine A breaks
down, any part in it is sent to machine B and processed as soon as B becomes free, but processing begins
over again, taking 100 + 20 minutes. Again, type / parts from machine A are processed ahead of any
parts waiting at B, but after any part currently being processed. When machine B breaks down, any part
being processed resumes processing as soon as B becomes available. All machines handle one part at a
time. Make two independent replications of the simulation. Each replication will consist of an 8-hour
initialization phase to load the system with parts. followed by a 40-hour steady-state run. (Independent
replications means that each run uses a different stream of random numbers.) Management is interested
in the long-run throughput {i.e.. the number of parts of each type (1 and II) produced per 8-hour day].
fong-run utilization of each machine, and the existence of bottlenecks (long “lines™ of waiting parts, as
measured by the queue length at each machine). Report the output data in a table similar to the following:

Run I Run2  Average of 2 Runs

Utilization A

Utilization B
Etc.

Include a brief statement summarizing the important results.

Students are arriving at the college office at the rate of one every 6 + 2 minutes to pay the fees. They
hand over the forms to one of the two clerks available and it takes 10 = 2 minutes for the clerk to verity
each form. Then the forms are sent to a single cashier who takes 6 £ 1 minute per form. Simulate the
system for 100 hours and determine the

(a) utilization of each clerk
(b) utilization of the cashier
(¢) average time required to process a form (clerk + cashier)

People arrive at a visa office at the rate of one every 15 +10 minutes. There are three officers (A. B. and
C) who scrutinize the applications for a duration of 30 + [0 minutes. From the past records. it is found
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30.

31.

32.

33.

34.

that on an average, 25% of the applications are rejected. Visa applicants form a single line and go to the
officer whoever becomes free. If all the three are free, customers always select ofticer B who is believed
to be considerate. Simulate for 500 visa applicants and determine

a) How many of them selected officer B?
b) How many visa applications are rejected?

People arrive at a microscope exhibit at a rate of one every 8 + 2 minutes. Only one person can see the
exhibit at a time. It takes 5 = 2 minutes to see the exhibit. A person can buy a “privilege™ ticket for $1
which gives him or her priority in line over those who are too cheap to spend the buck. Some 50% of the
viewers are willing to do this, but they make their decision to do so only if one or more people are in line
when they arrive. The exhibit is open continuously from 10:00 A.M. to 4:00 P.M. Simulate the operation
of the system for one complete day. How much money is generated from the sale of privilege tickets?

Two machines are available for drilling parts (A-type and B-type). A-type parts arrive at a rate of one
every 10 £ 3 minutes, B-type parts at a rate of one every 3 £ 2 minutes. For B-type parts, workers choose
an idle machine. or if both drills, the Dewey and the Truman. are busy, they choose a machine at random
and stay with their choice. A-type parts must be drilled as soon as possible; therefore, if a machine is
available, preferably the Dewey, it is used; otherwise the part goes to the head of the line for the Dewey
drill. All jobs take 4 + 3 minutes to complete. Simulate the completion of 100 A-type parts. Estimate the
mean number of A-type parts waiting to be drilled.

A computer center has two color printers. Students arrive at a rate of one every 8 + 2 minutes to use the
color printer. They can be interrupted by professors, who arrive at a rate of one every 12 + 2 minutes. There
is one systems analyst who can interrupt anyone, but students are interrupted before professors. The
systems analyst spends 6 + 4 minutes on the color printer and then returns in 20 £ 5 minutes. Professors
and students spend 4 + 2 minutes on the color printer. If a person is interrupted, that person joins the
head of the queue and resumes service as soon as possible. Simulate for 50 professor-or-analyst jobs.
Estimate the interruption rate per hour. and the mean length of the waiting line of students.

Parts are machined on a drill press. They arrive at a rate of one every 5 = 3 minutes, and it takes 3 + 2
minutes to machine them. Every 60 + 60 minutes, a rush job arrives. which takes 12 £ 3 minutes to
complete. The rush job interrupts any nonrush job. When the regular job returns to the machine. it stays
only for its remaining process time. Simulate the machining of 10 rush jobs. Estimate the mean system
response time for each type of part. (A response time is the total time that a part spends in the system.)

Pull system is used to assemble items in an assembly line. There are two stations. Station 1 receives
items at the rate of one every 12 = 3 minutes. The operator in station | takes 14 + 4 minutes, while the
station Il operator takes 15 = 2 minutes. The space between the two stations can accommodate only
three parts. Hence, if the space is full, the station I operator has to wait till the station IT operator removes
one part. Simulate the system for 8 hours of operation.

For Exercise 34. comment on the output of the model as to whether it will give the true utilization of the
station | server.

A patient arrives at the Emergency Room at Hello-Hospital about every 40 + 19 minutes. Each patient
will be treated by either Doctor Slipup or Doctor Gutcut. Twenty percent of the patients are classified
as NIA (need immediate attention) and the rest as CW (can wait). NIA patients are given the highest
priority (3), see a doctor as soon as possible for 40 £ 37 minutes. but then their priority is reduced to 2
and they wait until a doctor is free again, when they receive further treatment for 30 + 25 minutes and
are then discharged. CW patients initially receive the priority 1 and are treated (when their turn comes)
for 15 £ 14 minutes: their priority is then increased to 2. they wait again until a doctor is free and receive
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37.

39.

40.

41.

10 £ 8 minutes of final treatment, and are then discharged. Simulate for 20 davs of continuous operation.
24 hours per day. Precede this by a 2-day initialization period to load the system with patients. Report
conditions at times 0 days. 2 days. and 22 days. Does a 2-day initialization appear long enough to load
the system to a level reasonably close to steady-state conditions? (a) Measure the average and maximum
queue length of NIA patients from arrival to first seeing a doctor. What percent do not have to wait at
all”? Also tbulate and plot the distribution ef this initial waiting time for NIA patients. What pereent
wait fess than S minutes betore seeing a doctor? (b) Tabulate and plot the distribution of total time in
svstem for all patients. Estimate the 90% quantile—that is. 90% of the patients spend less than v amount
of time in the system. Estimate v, (¢) Tabulate and plot the distribution of remaining time in system
from alter the first treatment to discharge. for all patients. Estimate the 90% quantile. (Note: Most
simulation packages provide the facility to automatically tabulate the distribution of any specified

vartable

People e ata new spaper stand with anmeervarrnval tme that s exponentially distributed with a mean
ol 0.5 mumute. Filtv-tive percent of the people buy just the morning paper, 234 buy the morning puper
and w Waldl Streer Journal . The remainder buy only the Wall Street Journal. One clerk handles the Wl
Strecet Journal sales. another clerk morning-paper sales. A person buying both goes to the Wall Street
Jowrnal clerk. The time it takes o serve a customer is normally distributed with @ mean of 40 seconds
and a standard deviation of 4 seconds for all transactions. Collect statistics on queues for cach type of
transaction. Suggest ways for making the system more effictent. Simulate for 4 hours.

Bernie remodels houses and makes room additions. The time it takes to finish a job is normally dis-
tributed with a mean of 17 elapsed days and a standard deviation of 3 days. Homeowners sign contracts
for jobs at exponentially distributed intervals having a mean of 20 days. Bernie has only one crew.
Estimate the mean waiting time (from signing the contract until work begins) for those jobs where a
wail oceurs. Also estimate the percentage of time the erew is idle. Simulate until 100 jobs have been
completed.

In acartain factory, the ol enib s manned by a smgle clerk. There are two types of ool request and the

e to process ol request depends on the type ol ol request as

1ype of Request Inrerarrival Time (Second ) Service Time (Second)
l Exponential with mean 420 Normal (300.75)
2 Exponential with mean 300 Normal (100.40)

The clerk has been serving the mechanics on FCFS basis. Simulate the system for one day operation
{8 hours).

In Exercise 39, the management feels that the average number of waiting mechanics can be reduced if
Type 2 requests are served ahead of Type 1. Justify.

The interarrival time for parts needing processing is given as follows:

Interarrival Time (Seconds) Proportion l
— - -
10-20 0.20 i

2030 0.30 l

30-40 0.50 |
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There are three types of parts: A, B, and C. The proportion ol cach part. and the mean and standard
deviation of the normally distributed processing times are as follows:

Part Type

Proportion

Mean

Standard Deviation

A
B
C

0
0
0

RSN

9

30 seconds
10 seconds
50 seconds

3 seconds
4 seconds
7 seconds

Each machine processes any type of part. one part at a time. Use simulation to compare one with two
with three machines working in parallel. What criteria would be appropriate for such a comparison’?

Orders are received for one of four types of parts. The interarrival time between orders is exponentially
distributed with a mean of 10 minutes. The table that follows shows the proportion of the parts by wpe
and the time to fill cach type of order by the single clerk.

Part Type Percentage Service Time (Minutes)

A 40 Neo. 1. 1.3)
B 30 N(9.1.2.9)
C 20 NCIE& 4.1
D 10 N(I5. 1 4.5)

Orders of types A and B are picked up immediately after they are filled. but orders of types C and D
must wait 10 £ 5 minutes to be picked up. Tabulate the distribution of time to complete delivery for all
orders combined. What proportion take less than 15 minutes? What proportion take less than 253
minutes? Simulate for an 8-hour initialization period. followed by a 40-hour run. Do not use any data
collected in the 8-hour initialization period.

Three independent widget-producing machines all require the same tvpe of vital part. which necds
frequent maintenance. To increase production it is dec:ded o keep two spare parts on hand (for a total
of 2+ 3 = 5 parts). After 2 hours of use. the part is removed from the machine and taken to a single
technician, who can do the required maintenance in 20 + 20 minutes. After maintenance. the part is
placed in the pool of spare parts. to be put into the first machine that requires it. The technician has other
duties, namely. repairing other items which have a higher priority and which arrive cvery 60 £ 20
minutes requiring 15 + 15 minutes to repair. Also, the technician takes a 15-minute break in cach 2-hour
time period. That is. the technician works | hour 45 minutes., takes off 15 minutes. works | hour 43
minutes, takes off 15 minutes. and so on. (a) What are the model’s initial conditions—that is. where are
the parts at time 0 and what is their condition” Are these conditions typical of “steady state™? (b) Make
cach replication of this experiment consist of an 8-hour initialization phase followed by a 40-hour
data-collection phase. Make four statistically independent replications of the experiment all in one
computer run (i.c.. make four runs with each using a different set of random numbers). (¢) Estimate the
mean number of busy machines and the proportion of time the technician is busy. (d) Parts are estimated
1o cost the company $50 per part per 8-hour day (regardless of how much they are in use). The cost of
the technician is $20 per hour. A working machine produces widgets worth $100 for cach hour of
production. Develop an expression to represent total cost per hour which can be attributed 10 widget
production (i.c.. not all of the technician™s time is due to widget production). Evaluate this exprossion.
given the results of the simulation.
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44. The Wee Willy Widget Shop overhauls and repairs all types of widgets. The shop consists of five work
stations. and the flow of jobs through the shop is as depicted here:

C

L

y

10%

Regular jobs arrive at station A at the rate of one every 15 £ 13 minutes. Rush jobs arrive every 4 £ 3
hours and are given a higher priority except at station C. where they are put on a conveyor and sent
through a cleaning and degreasing operation along with all other jobs. For jobs the first time through a
station, processing and repair times are as follows:

Number Processing and/or
Machines Repair Times
Station or Workers (Minutes) Description
A 1 12+ 21 Receiving clerk
B 3 40 + 20 Disassembly and parts
replacement
C 1 20 Degreaser
D 4 50 £ 40 Reassembly and
adjustments
E 3 40%5 Packing and shipping

The times listed above hold for all jobs that follow one of the two sequences A > B — € — D — Eor
A — B — D — E. However, about 10% of the jobs coming out of station D are sent back to B for further
work (which takes 30 + 10 minutes) and then are sent to D and finally to E. The path of these jobs is as
follows:

100 + 10 A
— )
90 + 15

10=6 B /
—_—

N
| 816
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Every 2 hours, beginning | hour atter opening, the degreasing station C shuts down for routine maintenance.
which takes 10 = | minute. However, this routine maintenance does not begin until the current widget. if
any, has completed its processing.

(a) Make three independent replications of the simulation model, where one replication equals an 8-hour
simulation run. preceded by a 2-hour initialization run. The three sets of output represent three
typical days. The main performance measure ot interest is mean response time per job, where a
response time is the total time a job spends in the shop. The shop is never empty in the morning.
but the model will be empty without the initialization phase. So run the model for a 2-hour initial-
ization period and collect statistics from time 2 hours to time 10 hours. This “warm-up” period will
reduce the downward bias in the estimate of mean response time. Note that the 2-hour warm-up is a
device to load a simulation model to some more realistic level than empty. From each of the three
independent replications, obtain an estimate of mean response time. Also obtain an overall estimate,
the sample average of the three estimates

(b) Management is considering putting one additional worker at the busiest station (A, B, D, or E).
Would this significantly improve mean response time”?

(¢) As an alternative to part (b). management is considering replacing machine C with a faster one that
processes a widget in only 14 minutes. Would this significantly improve mean response time?

A building-materials firm loads trucks with two payloader tractors. The distribution of truck-loading
times has been found to be exponential with a mean loading time of 6 minutes. The truck interarrival
time is exponentially distributed with an arrival rate of 16 per hour. The waiting time of a truck and
driver is estimated to cost $50 per hour. How much (if any) could the firm save (per 10 hour day) if an
overhead hopper system that would fill any truck in a constant time of 2 minutes is installed? (Assume
that the present tractors could and would adequately service the conveyors loading the hoppers.)

A milling-machine department has 10 machines. The runtime until failure occurs on a machine is expo-
nentially distributed with a mean of 20 hours. Repair times are uniformly distributed between 3 and 7 hours.
Select an appropriate run length and appropriate initial conditions.

(a) How many repair persons are needed to ensure that the mean number of machines running is greater
than eight?
(b) If there are two repair persons, estimate the number of machines that are either running or being served.

Jobs arrive every 300 £ 30 seconds to be processed through a process that consists of four operations:
OP10 requires 50 + 20 seconds. OP20 requires 70 £ 25 seconds, OP30 requires 60 + 15 seconds, OP40
requires 90 £ 30 seconds. Simulate this process until 250 jobs are completed: then combine the four
operations of the job into one with the distribution 240 + 100 seconds and simulate the process with this
distribution. Does the average time in the system change for the two alternatives?

Ships arrive at a harbor at the rate of cne every 60 + 30) minutes. There are six berths to accommodate
them. They also need the service of a crane for unloading and only one crane is available. After unloading.
10% of the ships stay for refuel before leaving. while the others leave immediately. Ships do not require
the use of crane for refueling. It takes 7 = 3 hours for unloading and 60 + 20 minutes for refueling.
Assume that the crane is subjected to routine maintenance once in every 100 hours, and it takes 5 + 2
hours to complete the maintenance. The crane’s unloading operation is not interrupted for maintenance.
The crane is taken for maintenance as early as possible after completing the current unloading activity.
Simulate the system for unloading 500 ships that require refueling.

Two types of jobs arrive to be processed on the same machine. Type 1 jobs arrive every 80 £ 30 seconds
and require 35 + 20 seconds for processing. Type 2 jobs arrive every 100 + 40 seconds and require
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20 + 15 sceconds for processing. Engincering has judged that there is excess capacity on the machine.
For a simulation of § hours of operation of the system. tind X for Type 3 jobs that arrive every X £ 0.4X
seconds and require a time of 30 seconds on the machine so that the average number of jobs waiting to

be processed is two or less.

Using spreadsheet software, generate 1000 uniformly distributed random values with mean 10 and
spread 2. Plot these values with intervals of width 0.5 between 8 and 12, How close did the simulated
set of values come to the expected number in each interval?

Using a spreadsheet. generate 1000 exponentially distributed random values with a mean of 10. What is
the maximum of the simulated values? What fraction of the generated values is less than the mean of 107
Plot a histogram of the generated values. (Hint: If you cannot find an exponential generator in the
spreadsheet you use. use the formula -10*LOG(1-R), where R is a uniformly distributed random number
from 0 to 1 and LOG is the natural logarithm. The rationale for this formula is explained in Chapter 8
on random-variate generators.)
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Statistical Models in Simulation

In modeling real-world phenomena, there are few situations where the actions of the entities within the
system under study can be predicted completely. The world the model-builder sees is probabilistic rather
than deterministic. There are many causes of variation. The time it takes a repairperson to fix a broken
machine is a function of the complexity of the breakdown, whether the repairperson brought the proper
replacement parts and tools to the site. whether another repairperson asks for assistance during the course of
the repair, whether the machine operator receives a lesson in preventive maintenance, and so on. To the
model-builder, these variations appear to occur by chance and cannot be predicted. However, some statistical
model might well describe the time to make a repair.

An appropriate model can be developed by sampling the phenomenon of interest. Then, through educated
guesses (or using software for the purpose ), the model-builder would select a known distribution form, make
an estimate of the parameter(s) of this distribution, and then test to see how good a fit has been obtained.
Through continued eftorts in the selection of an appropriate distribution form, a postulated model could be
accepted. This multistep process is described in Chapter 9.

Section 5.1 contains a review of probability terminology and concepts. Some typical applications of
statistical models. or distribution forms, are given in Section 5.2. Then, a number of selected discrete and
continuous distributions are discussed in Sections 5.3 and 5.4. The selected distributions are those that
describe a wide variety of probabilistic events and, further, appear in different contexts in other chapters of
this text. Additional discussion about the distribution forms appearing in this chapter, and about distribution
forms mentioned but not described, is available {from a number of sources [Hines and Montgomery, 1990;
Ross. 2002: Papoulis. 1990; Devore, 1999: Walpole and Myers., 2002 Law and Kelton, 2000]. Section 5.5
describes the Poisson process and its relationship to the exponential distribution. Section 5.6 discusses
empirical distributions.

131
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5.1 REVIEW OF TERMINOLOGY AND CONCEPTS

1. Discrete random variables. Let X be a random variable. It the number of possible vilues of X s finite, or
countably infinite, X is called a discrete random variable. The possible values of X may be listed as. v,

In the finite case. the list terminates: in the countably finite case. the hist continues indefinitely.

Example 5.1 S
The number of jobs arriving cach week at a job shop is observed. The random variable of interest is X, where
X = number of jobs arriving cach week
The possible values of X are given by the range space of X. which is denoted by K Here Ro= {0,120}

Let X be a discrete random variable. With cach possible outcome v, in R . a number p(x ) = P(X = v)
gives the probability that the random variable equals the value of v The numbers pey) i = 1. 20 must sat-
isfy the following two conditions:

L px)=0. torally

2. 2 NURWES |

The collection of pairs (x,. p(x ). i =1, 2. .. is called the probability distribution of X, and pty ) is called the
probability mass function (pmf) of X.

ExamplesS2
Consider the experiment of tossing a single dic. Define X as the number of spots on the up face of the dic
after a toss. Then Ry = {1, 2,3, 4. 5.6}, Assume the dic is loaded so that the probability that a given face
lands up is proportional to the number ot spots showing. The discrete probability distribution for this random
experiment is given by

X I 2 3 + s 6|
Pl 1721 2121 3/21 421 521 6/21
The conditions stated carlier are satisficd—that is, py) 2 O for = 1. 2. 6 and Z P =1/ 204

6/21 = 1. The distribution is shown graphically in Figure 5.1,

2. Continuous random variables. 1t the range space Ry of the random variable X is an interval or a
collection of intervals. X is called a continuous random variable. For a continuous random vartable X, the
probability that X lies in the interval [a. O] is given by

i’(ug,\'S/)):j'mmn (5.1)

The function fty) is called the probability density function (pdt) of the random variable X. The pdf satisties
the following conditions:

a. flvy20forallvin R,
b. L’\ flode =1

c. flx)y=0ifxisnotinR,
As a result of Equation (5.1 for any specified value v, P(X = v ) = 0. because

j\ fiv) dy = 0
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Figure 5.1 Probability mass function for loaded-die example.

/(v

Figure 5.2 Graphical interpretation of Pta < X < h).

PIX = v ) = O also means that the following cquations hold:
PlasXs<sh=Pa<X<h=Pu<X<bh =Pa<X<bh) (5.2)

The graphical interpretation of Equation (5.1) is shown in Figure 5.2. The shaded arca represents the
probability that X lies in the interval |a. b].
Example 5.3
The life of a device used to inspect eracks in aircraft wings is given by X, a continuous random variable

assuming all values in the range v = 0. The pdf of the lifetime, in years, is as follows:

|
‘“”.‘2—« oAzl

’ 0. otherwise
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S
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Figure 5.3 pdf for inspection-device life.

This pdf is shown graphically in Figure 5.3. The random variable X is said to have an exponential distribution
with mean 2 years.
The probability that the life of the device is between 2 and 3 years is calculated as

5

¢y s
P(zsxg.%):—j oy
2
=V +e ' =-0223+0.368=0.145

3. Cumudative distribution function. The cumulative distribution function (cdf). denoted by F'(x). measures
the probability that the random variable X assumes a value less than or equal to x, that is. F(x) = P(X <)
If X is discrete, then

F(x)= 2 plx) (5.3)
all

If X is continuous, then
Flx)= j () dt (5.4)

Some properties of the cdf are listed here:
a. Fis a nondecreasing function. If ¢ < b. then F(ua) < F(b).

b. lim ___,_ F(x)=1
¢ lim__ _F(x)=0

All probability questions about X can be answered in terms of the cdf. For example.

Pla<X <b)y=F(b)~ Fla) foralla <b (5.5)
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For continuous distributions, not only does Equation (5.5) hold, but also the probabilities in Equation (5.2)
are equal to F(b) — F(a).

Example 5.4
The die-tossing experiment described in Example 5.2 has a cdf given as follows:

v (==, 1) (12 (2, 3) 13.4) (4.5) [5.6) [6, =)
F(x) 0 1721 321 6/21 1021 15/21 2121

where [a, b) = {a < x < b}. The cdf for this example is shown graphically in Figure 5.4.

If X is a discrete random variable with possible values x,, x,,..., where X, <x,< ..., the cdf is a step
function. The value of the cdt is constant in the interval [x_, x,) and then takes a step, or jump, of size p(x))
at v. Thus, in Example 5.4, p(3) = 3/21, which is the size of the step when x = 3.

Example 5.5
The cdf for the device described in Example 5.3 is given by

N

| N
Flf.r):r—j’e‘”‘dr =l-e

2 {
The probability that the device will last for less than 2 years is given by

POSX<S2)=FQ)-F(O)=FQ2)=1-¢"=0.632

Fx)

21721 —

1821

15/21

9/21 |~

6/21 —

321 =

| | | |
1 2 3 4 S 6 ¥

Figure 5.4 cdf for loaded-die example.
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The probability that the life of the device is between 2 and 3 years is caleulated as
PREX<H=F/-F=l-¢ " )=tl=¢ "
=—¢ te ! =-0.223+0.308 = 0.145

as found in Example 5.3.

4. Expectation. An important concept in probability theory is that of the expectation of a random variable.
If X is a random variable. the expected value of X. denoted by £(X). for discrete and continuous variables is
defined as follows:

E(X)= 2,\‘, ply) it X 18 diserete (5.0)

iy

and
EX)= J VAR ITAY it X is continuous (5.7

The expected value £(X) of a random variable X is also referred to as the mean. g, or the first moment of X.
The quantity E(X"). n > 1. is called the nth moment of X, and is computed as follows:

EX"y= Z.\‘l” px) if X is discrete (5.8)

KU

and

E(X") = J- Vo) dy it X is continuous (5.9)

The variance of a random variable, X. denoted by ViX) or var(X) or ¢, is defined by
VX = BN - EIX ]
A useful identity in computing V(X) is given by
VIX)= E(X7) = [ECXO) (5.10

The mean £(X) is a measure of the central tendency of a random variable. The variance of X measures
the expected value of the squared difference between the random variable and its mean. Thus. the variance.
V(X). is a measure of the spread or variation of the possible values of X around the mean E(X). The standard
deviation, @. is defined to be the square root of the variance. o=, The mean, £(X), and the standard deviation.
o = JV(X). are expressed in the same units.

Example 5.6
The mean and variance of the die-tossing experiment described in Example 5.2 are computed as follows:

. | 2 6 91
EX)y= — |+2| — |+ +6]—|=—=433
21 21 21 21

To compute VX)) Trom Equation (3,101 st compute £V from Equation (3.8) as Tollows:

. N 2 €
ECX )= (—]+2 ( )+- +06 (—L]fll
21 21 2]



STATISTICAL MODELS IN SIMULATION 137

Thus.

and

o =JV(X) =149

Example 5.7 .
The mean and variance of the life of the device described in Example 5.3 are computed as follows:

i

E(X)= ?]Z—'[:‘,te”‘":dx = -—.\’e)"'“l’[ +J-{;' e dx

00

1
1/2

v/l

=0+

o

To compute V(X) from Equation (5.10). first compute £(X?) from Equation (5.9) as follows:

. e~ - s
E(X)= —j() xe T dx

2

Thus.

‘. Tve ! “dy =8

Ay

E(X)=—xe¢ 1 +

0

o

giving
V(X) =8 — 27 = 4 years-

and

-

0 =yV(X)=2years

With a mean life of 2 years and a standard deviation of 2 years, most analysts would conclude that actual
lifetimes. X. have a fairly large variability.

S. The mode. The mode is used in describing several statistical models that appear in this chapter. In the
discrete case, the mode is the value of the random variable that occurs most frequently. In the continuous
case. the mode is the value at which the pdf is maximized. The mode might not be unique: if the modal value
occurs at two values of the random variable. the distribution is said to be bimodal.

5.2 USEFUL STATISTICAL MODELS

Numerous situations arise in the conduct of a simulation where an investigator may choose to introduce prob-
abilistic events. In Chapter 2. queueing. inventory. and reliability examples were given. In a queueing system.
interarrival and service times are often probabilistic. In an inventory model. the time between demands and
the lead times (time between placing and receiving an order) can be probabilistic. In a reliability model. the
time to failure could be probabilistic. In each of these instances. the shnulation analyst desires to generate
random events and to use a known statistical mode! if the underlying distribution can be found. In the following
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paragraphs, statistical models appropriate to these application areas will be discussed. Additionally. statistical
models usetul in the case of limited data are mentioned.

1. Queneing systems. In Chapter 2, examples of waiting-line problems were given. In Chapters 2. 3, and
4. these problems were solved via simulation. In the queueing examples. interarrival- and service-time patterns
were given. In these examples. the times between arrivals and the service times were always probabilistic, as is
usually the case. However. it is possible to have a constant interarrival time (as in the case of a line moving at
a constant speed in the assembly of an automobile), or a corstant service time (as in the case of robotized spot
welding on the same assembly line). The following example illustrates how probabilistic interarrival times
might occur.

Example 5.8 )
Mechanics arrive at a centralized tool crib as shown in Table 5.1. Attendants check in and check out the
requested tools to the mechanics. The collection of data begins at 10:00 A.m. and continues until 20 differ-
ent interarrival times are recorded. Rather than record the actual time of day. the absolute time from a given
origin could have been computed. Thus. the first mechanic could have arrived at time zero. the second
mechanic at ttme 7:13 (7 minutes. 13 scconds). and so on.

Example 5.9
Another way of presenting interarrival data is to find the number of arrivals per time period. Here. such
arrivals occur over approximately 1 1/2 hours: it is convenient to look at [0-minute time intervals for the first
20 mechanics. That is. in the first 10-minute time period. one arrival occurred at 10:05::03. In the second
time period. two mechanics arrived. and so on. The results are summarized in Table 5.2. This data could then
be plotted in a histogram, as shown in Figure 5.5.

Table 5.1 Arrival Data

Arrival Arrival Interarvival Time
Number (Hour:Minutes::Secondy) (Minutes::Seconds)
1 10:05::03
2 10:12::16 713
3 10:15::48 3232
4 10:24::27 8::39
5 10:32::19 7::52
6 10:35::43 3024
7 10:39::51 408
8 10:40::30 0)::39
9 10:41::17 0::47
10 1044012 285
I 10:45::47 1::35
12 10:30::47 3::00
13 11:00::05 9::18
14 11:04::58 4253
[N 11:06::12 114
16 [1:11::23 Sl
17 11:16::31 5208
18 070018 0::47
19 11210026 4::08
20 [1:24:43 3017
21 11:31::19 6::36
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Table 5.2 Arrivals in Successive Time Periods

T
Time Number «f lime Number of
Period Arrivals Period Arrivals
| 1 6 |
2 2 7 3
3 | 8 3
4 3 | 9 2
5 4 }‘ — -
3
g
3
2
~
! 2 3 N

Number of arrivals in 10-minute period

Figure 5.5 Histogram of arrivals per time period.

The distribution of time between arrivals and the distribution of the number of arrivals per time period
are important in the simulation of waiting-line systems. “Arrivals™ occur in numerous ways: as machine
breakdowns. as jobs coming into a jobshop. as units being assembled on a line. as orders to a warehouse. as
data packets to a computer system. as calls to a call center. and so on.

Service times could be constant or probabilistic. If service times are completelv random. the exponen-
tial distribution is often used for simulation purposes: however. there are several other possibilities. It could
happen that the service times are constant. but some random variability causes fluctuations in cither a posi-
tive or a negative way. For example. the time it takes for a lathe to traverse a 10-centimeter shaft should
always be the sume. However. the material could have slight differences in hardness or the tool might wear:
cither event could cause different processing times. In these cases, the normal distribution might deseribe the
service time.

A special case oceurs when the phenomenon of interest seems 1o follow the normal probability distri-
bution, but the random variable is restricted to be greater than or less than a certain value. In this case. the
truncated normal distribution can be utilized.

The gamma and Weibull distributions are also used e model interarrival and service times. (Actually.
the exponential distribution is a special case of both the gamma and the Weibull distributions.) The
differences between the exponential. gamma. and Weibull distributions involve the location of the modes of
the pdi™s and the shapes of their tails for large and small times, The exponential distribution has its mode at the
origin. but the gamma and Weibull distributions have their modes at some point (20) that is a function of
the parameter values sclected. The tail of the gamima distribution is fong. like an exponential distribution: the
tail of the Weibull distribution can decline more rapidly or less rapidly than that of an exponential distribution.
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In practice, this means that, if there are more large service times than an exponential distribution can account
for, a Weibull distribution might provide a better model of these service times.,

2. Inventory and supplv-chain svstems. In realistic inventory and supply-chain systems. there are at least
three random variables: (1) the number of units demanded per order or per time period. (2) the time between
demands. and (3) the lead time. (The lead time s defined as the time between the placing of an order for
stocking the inventory system and the receipt of that order.) In very simple mathematical models of inven-
tory systems, demand is a constant over time. and lead time is zero. or a constant. However. in most real-
world cases, and, hence. in simulation models. demand oceurs randomly in time. and the number of units
demanded each time a demand occurs is also random. as illustrated by Figure 5.0.

Distributional assumptions for demand and lead time in inventory theory texts are usually based on
mathematical tractability, but those assumptions vould be invalid in a realistic context. In practice. the lead-
time distribution can often be fitted fairly well by a gamma distribution [Hadley and Whitin. 1963]. Unlike
analytic models. simulation models can accommodate whatever assumptions appear most reasonable.

The geometric. Poisson. and negative binomial distributions provide a range of distribution shapes that
satisty a variety of demand patterns. The geometric distribution, which is a special case of the negative bino-
mial. has its mode at unity. given that at least one demand has occurred. It demand data are characterized by
a long tail. the negative binomial distribution might be appropriate. The Poisson distribution is often used to
model demand because it is simple. it is extensively tabulated. and it is well known. The tail of the Poisson
distribution is generally shorter than that of the negative binomial, which means that fewer large demands
will occur if a Poisson model is used than if a negative binomial distribution is used (assuming that both
models have the same mean demand).

3. Reliability and maintainabiliry. Time to failure has been modeled with numerous distributions, includ-
ing the exponential. gamma, and Weilbull. If only random failures occur. the time-to-failure distribution may
be modeled as exponential. The gamma distribution arises from modeling standby redundancy. where cach
component has an exponential time to failure. The Weibull distribution has been extensively used to repre-
sent time to failure. and its nature is such that it can be made to approximate many observed phenomena
[Hines and Montgomery. 1990]. When there are a number of components in a system and failure is due to
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Figure 5.6 Random demands in time.
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the most serious of a large number of defects. or possible defects. the Weibull distribution seems to do
particularly well as a model. In situations where most failures are due 1o wear, the normal distribution might
very well be appropriate [Hines and Montgomery, 1990]. The lognormal distribution has been found (o be
applicable in deseribing time to failure for some types of components.

4. Limited dara. In many instances, simulations begin before data coliection has been completed. There
are three distributions that have application to incomplete or limited data. These are the uniform, triangular,
and beta distributions. The uniform distribution can be used when an interarrival or service time is known to
be random. but no information is immediately available ubout the distribution [Gordon. 1975]. However.
there are those who do not favor using the uniform distribution. calling it the “distribution of maximum igno-
rance” because it is not necessary to specify more than the continuous interval in which the random variable
may occur. The triangular distribution can be used when assumptions are made about the minimum. maxi-
mum. and modal values of the random variable. Finally, the beta distribution provides a variety of distribu-
tional forms on the unit interval. ones that. with appropriate modification. can be shifted to any desired
iterval. The uniform distribution is a special casc of the bera distribution. Pegden, Shannon, and Sadowski
[1995] discuss the subject of limited data in some detail. and we include further discussion in Chapter 9.

5. Other distributions. Several other distributions mzy be useful in discrete-system simulation. The
Bernoulli and binomial distributions are two discrete distributions which might describe phenomena of interest.
The hyperexponential distribution is similar to the exponential distribution. but its greater variability might
make it useful in certain instances.

5.3 DISCRETE DISTRIBUTIONS

Discrete random variables are used to describe random phenomena in which only integer values can occur.
Numerous examples were given in Section 5.2—for example. demands for inventory items. Four distribu-
tions are described in the following subsections.

L. Bernoulli trials and the Bernoulli distribution. Consider an experiment consisting of 5 trials, each of
which can be a success or a failure. Let X = 1 if the jth experiment resulted in a success, and let X =0if
the jth experiment resulted in a failure. l"ln # Bernoulli trials are called a Bernoulli process if the Irulx are
independent, each trial has only two possible outcomes (success or failure). and the probability of a success
remains constant from trial to trial. Thus,

PO XL ) = ) s pala) - X))

n

and
P- r=lj=5L2 .0
plx)=pyy=<cl—p=¢y. x =0.j=12....n (5.1
0. otherwise

For one tral. the distribution given in Equation (5.11) is called the Bernoulli distribution. The mean and
variance of X are calculated as follows:

3 =0 p=

EX)=0.-q+1-p=p
and

VX)) = [ gy + (17 py] - p? =p(l - p)
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2. Binomial distribution. The random variable X that denotes the number of successes in i Bernoulli
trials has a binomial distribution given by p(x). where

(n , i

plygt e o y=0102000n

pla) = L\) (5.12)
0, otherwise

Equation (3.12) is motivated by computing the probability of a particular outcome with all the successes. cach
denoted by $. oceurring in the first x trials. tollowed by the n — x failures. cach denoted by an F—that is,

vl these noovotthese

PSSS. o SSFF.... FFy=pqg""

[’1] 0
T o
kS X))

outcomes having the required number of §7s and F’s. Therefore, Eguation (5.12) results. An casy approach

where ¢ = 1 — p. There are

(o calculating the mean and variance of the binomial distribution is to consider X as a sum ot n independent
Bernoulli random variables. cach with mean p and variance p(l = p) = pg. Then,
X=X +X,+ - +X,
and the mean. £(X). is given by
FtXy=p+p+ - +p=np (5.13)
and the variance V(X) is given by

VIX)=pg +pq +--+pg=npq (5.14

Example 5.10 :
A production process manutactures computer chips on the average at 2% noncontforming. Every day. a random

sample of size 50 is taken from the process. If the sample contains more than two noncontorming chips, the
process will be stopped. Compute the probability that the process is stopped by the sampling scheme.

Consider the sampling process as 1 = 50 Bernoulli trials. each with p = 0.02: then the total number of
nonconforming chips in the sample. X, would have a binomial distribution given by

50 .
(002,098 ', v=0.1.2.....50
ply)= X

0. otherwise
It is much easier to compute the right-hand side of the following identity to compute the probubility that
more than two nonconforming chips are found in a sample:
PX>2)=1-PX<2)

The probability £(X < 2) is calculated from



STATISTICAL MODELS IN SIMULATION 143

R

S (50
P(XSQ)ZZ( _J(o.ozmo_e)xy“

Ry}

=(0.98)" +5610.02)(0.98)" +1225(0.02)"(0.98)™
=0.92

Thus, the probability that the production process is stopped on any day. based on the sampling process, is
approximately 0.08. The mean number of nonconforming chips in a random sample of size 50 is given by

LEiX)=np =50(0.02) = |
and the variance is given by

V(X) = npg =5000.02):0.98) = 0.98

The cdf for the binomial distribution has been tabulated by Banks and Heikes [1984] and others. The tables
decrease the effort considerably for computing probabilities such as P« < X < ). Under certain conditions
on nand p. both the Poisson distribution and the normal distribution may be used to approximate the bino-
mial distribution [Hines and Montgomery, 1990

3. Geometric and Negative Binomial distributions. The geometric distribution is related to a sequence
of Bernoulli trials: the random variable of interest. X, is defined to be the number of trials to achieve the first
success. The distribution of X is given by

' 'pe o xv=1200 5.15)

0, otherwise

The event {X = x} occurs when there are x — | fuilures followed by a success. Each of the failures has an
associated probability of ¢ = 1 = p.and cach success has probability p. Thus.

PUFFF - FS)=4"'p

The mean and variance are given by

Lo
L(X)=— (5.16)
I
and
( -
Vix)=-L (5.17)
P
More generally. the negative binomial distribution is the distribution of the number of trials until the kth
success. for k= 102010 Y has a negative binomial distribation with parameters p and k. then the distribu-

ton of ¥is given by

vl
: ¢ Pt ov=kok+ 1 k+20
pyi=\k -1

0. otherwise

(5.18)

Because we can think of the negative binomial random variable )" as the sum of & independent geometric
random variables. it is casy to see that £} = k/p and V(X) = kg/p-.
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Example 5.11
Forty percent of the assembled ink-jet printers are rejected at the inspection station. Find the probability that
the first acceptable ink-jet printer is the third one inspected. Considering each inspection as a Bernoulli trial
with ¢ = 0.4 and p = 0.6 yields

p(3)=0.47(0.6) = 0.096

Thus. in only about 10% of the cases is the first acceptable printer the third one from any arbitrary starting
point. To determine the probability that the third printer inspected is the second acceptable printer. we use
the negative binomial distribution (5.13).

el

]7(3)4(:’ ]]0.4‘ 0.6) = ])0’4<0.m‘ =().288%

4. Poisson distribution. The Poisson distribution describes many random processes quite well and is
mathematically quite simple. The Poisson distribution was introduced in 1837 by S. D. Poisson in a book
concerning criminal and civil justice matters. (The title of this rather old text is “Recherches sur la proba-
bilite des jugements en matiere criminelle et en matiere civile.” Evidently, the rumor handed down through
generations of probability theory professors concerning the origin of the Poisson distribution is just not true.
Rumor has it that the Poisson distribution was first used to model deaths from the kicks of horses in the
Prussian Army.)

The Poisson probability mass function is given by

(5.19)

O, otherwise

where @ > 0. One of the important properties of the Poisson distribution is that the mean and variance are
both equal to e, that is,

EX)=o0o=V(X)
The cumulative distribution function is given by

Flo=Y “—— (5.20)
e

The pmf and cdf for a Poisson distribution with a = 2 are shown in Figure 5.7. A tabulation of the cdf is
given in Table A4

Example 5.12 - :
A computer repair person is “beeped” each time there is 4 call for service. The number of beeps per hour is
known to oceur in accordance with a Poisson distribution with a mean of & = 2 per hour. The probability of
three beeps in the next hour is given by Equation (5.19) with x = 3, as follows:

e 2 (01398
3! 6

) 0.18

p3)=
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Figure 5.7 Poisson pmf and cdf.

This same result can be read from the left side of Figure 5.7 or from Table A4 by computing

F(3) = F(2)=0857-0.677 =0.18

Example 5.13 S
In Example 5.12. find the probability of two or more beeps in a 1-hour period.
PQormore)=1-p)—p(ly=1-F()
=1 -0.406=0.594
The cumulative probability. £(1), can be read from the right side of Figure 5.7 o trom Table A 4.

Example 5.14
Fhe lead-time demand in an inventory system is the accumulation of demand for an item from the point at

which an order is placed until the order is received —that .,

/

=D (3.21)

where L is the fead-time demand. D | is the demand during the ith time period. and 7' is the number of time
pertods during the Tead time. Both ) and 7" may be randon variables.
An iventory manager desires that the probability of 4 stockout not exceed a certain fraction during the
lead time. For example. it may be stated that the probability of a shortage during the lead time not exceed 5%
If'the lead-time demand is Poisson distributed. the determination of the reorder point is greatly facilit: md
I'he reorder point is the level of inventory ar which a new order is placed.
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Assume that the lead-time demand is Poisson distributed with a mean of a = 10 units and that 95%
protection from a stockout is desired. Thus. it is desired to find the smallest value of x such that the proba-
bility that the lead-time demand does not exceed x is greater than or equal o 0.95. Using Equation (5.20)
requires tinding the smallest x such that

[P ](),
Flo=3 %2095

i
= .

The desired result occurs at v = 15. which can be found by using Table A.4 or by computation of ptO). p(1).....

5.4 CONTINUOUS DISTRIBUTIONS

Continuous random variables can be used to describe random phenomena in which the variable of interest
can take on any value in some interval-—for example. the time to failure or the length of a rod. Eight distri-
butions are described in the following subsections.

1. Uniform distribution. A random variable X is uniformly distributed on the interval (a. /) it its pdf is
given by

]
. , as<x<h
flx)=<bh—ua (5.22)
0, otherwise
The cdt is given by
0. v <
Fio=«2"9 u<x<b (5.23)
i h—a
1 1 «2bh
Note that
. . N, X,
Py, < X <x,)= F(x,)=F(x)= —=—
. ) b—a

is proportional to the length of the interval, for all x, and v, satisfying a < x, <
of the distribution are given by

x, < hb. The mean and variance

(5.24)

and

oAl
]
N

b—
vixy =24l
12

The pdf and cdf when « = 1 and b = 6 are shown in Figure 5.8.

The uniform distribution plays a vital role in simulation. Random numbers, uniformly distributed between
szero and 1. provide the means to generate random events. Numerous methods for generating uniformly
distributed random numbers have been devised: some will be discussed in Chapter 7. Uniformly distributed
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Figure 5.8 pdf and cdf for uniform distribution.

random numbers are then used o generate sample of random variates from all other distributions. as will be
discussed in Chapter §.

Example 5.15 )
A simulation of a warchouse operation is being developed. About every 3 minutes, a call comes for a fork-
lift truck operator to proceed to a certain location. An initial assumption is made that the time between calls
(arrivals) is uniformly distributed with a mean of 3 minutes. By Equation (5.25). the uniform distribution
with a mean of 3 and the greatest possible variability would have parameter values of ¢ = 0 and b = 6 minutes.
With very limited data (such as a mean of approximately 3 minutes) plus the knowledge that the quantity of
mterest is variable in a random fashion. the uniform distribution with greatest variance can be assumed. at
least until more data are available.

Example 5.16 -
A bus arrives every 20 minutes at a specitied stop beginning at 6:40 A.m. and continuing until 8:40 AL A cor-
tain passenger does not know the schedule. but arrives randomly (uniformly distributed) between 7:00 AM. and
7:30 AM.every morning. What is the probability that the passenger waits more than 5 minutes for a bus?

The passenger has to wait more than 5 minutes only if the arrival time is between 7:00 A.M. and 7:15 yA1L
or between 7:20 A.m. and 7:30 M. I X is a random variable that denotes the number of minutes past 7:00 A,
that the passenger arrives. the desired probanility is

PO<X<IS)+ PO <X <30)
Now. X is a uniform random variable on (0.30). Theretore. the desired probability 1s given by

15 2005
FUS)+ FGO) - FQ0)=—~+1-===
30 30 6

2. Exponential distribution. A random variable X is said to be exponentially distributed with parameter
« >0 il its pdf is given by

_ Ae ' 20
flx)= (5.20)
0. elsewhere

The density function is shown in Figures 5.9 and 5.3 Figure 5.9 also shows the cdf.
The exponential distribution has been used to model interarrival times when arrivals are completely
random and to model service times that arc highly variable. In these instances. A is a rate: arrivals per hour
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flx) F(x)

0 v 0 v

Figure 5.9 Exponential density function and curulative distribution function.

0 02 04 06 0% 1.0 12 14 16 18 20 22 24 16

Figure 5.10 pdfs for several exponential distributions.

or services per minute. The exponential distribuzion has also been used to model the lifetime of a component
that fails catastrophically (instantaneously). such as a light bulb: then A is the failure rate.

Several different exponential pdf’s are shown in Figure 5.10. The value of the intercept on the vertical
axis is always equal to the value of A. Note also that all pdf’s eventually intersect. (Why?)

The exponential distribution has mean and variance given by

Thus. the mean and standard deviation are equal. The edf can be exhibited by integrating Equation (5.20) to obtain

0. v< ()
Fxo=14. (5.2%)
Ae Mdr=1—-e¢ ", x20
O
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Example 5.17 R
Suppose that the life of an industrial lamp. in thousands of hours. is exponentially distributed with failure
rate A = 1/3 (one failure every 3000 hours. on the average). The probability that the lamp will last longer
than its mean lite. 3000 hours, is given by P(X > 3) = | — P(X < 3) = | — F(3). Equation (5.28) is used to
compute F(3). obtaining

PX>3=1-(l—-¢ " y=¢' =0.368

Regardless of the value of A, this result will always be the same! That is, the probability that an exponential
random variable is greater than its mean is 0.368. for any value of A.
The probability that the industrial famp will last between 2000 and 3000 hours is computed as

PIZSX<3)=F3) - F(2)

Again, from the cdf given by Equation (5.28),

AR

FG)=FQy=(-¢ ")=(~¢" )
=~-0.368+0513=0.145

One of the most important properties of the exponential distribution is that it is “memoryless.” which
means that. for all s > 0 and r 2 0,

PX>s+1lX>5)=P(X>1) (5.29)

Let X represent the life of a component (a battery, light bulb. computer chip. laser. etc.) and assume that
Vs exponentially distributed. Equation (5.29) states that the probability that the component lives for at least
s + rhours, given that it has survived s hours. is the same as the initial probability that it lives for at least ¢ hours.
If the component is alive at time s (if X > s). then the distribution of the remaining amount of time that it
survives, namely X —s. is the same as the original distribution of a new component. That is. the component does
not “remember” that 1t has already been in use for a time 5. A used component is as good as new.

That Equation (5.29) holds is shown by examining the conditional probability

P(X>s+D
P(X>5)

PIX>5+4t|X>5)= (5.30)

Fquation (5.28) can be used to determine the numerator and denominator of Equation (5.30). yielding

Abvti
>

PIX>s+1[X>5)=———=¢"
P

=P(X>1

Example 5.18 ~
Find the probability that the industrial lamp in Example 5.17 will last for another 1000 hours. given that it
i~ operating after 2500 hours. This determination can be found using Equations (5.29) and (5.28). as follows:

P(X>35|X>25)=P(X>l)=¢""=0717

Example 5.18 illustrates the memoryless property—namely. that a used component that follows an
exponential distribution is as good as a new component. The probability that a new component will have
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a life greater than 1000 hours is also equal to 0.717. Stated in general. suppose that a component which has a
lifetime that follows the exponential distribution with parameter A is observed and found to be operating at
an arbitrary time. Then, the distribution of the remaining lifetime is also exponential with parameter A.
The exponential distribution is the only continuous distribution that has the memoryless property. (The geo-
metric distribution is the only discrete distribution that possesses the memoryless property.)

3. Gamma distribution. A function used in defining the gamma distribution is the gamma function.
which is defined for all > 0 as

1“([3):j:.\/‘ ol (531

By integrating Equation (5.31) by parts. it can he shown that
Cpy=(p-nrp-1 (5.32)
If Bis an integer. then. by using T(1) = I and applying Equation (5.32). it can be seen that
py=(f- 1! (5.33)
The gamma function can be thought of as a gencralization of the factorial notion to all positive numbers. not

just integers.
A random variable X is gamma distributed with parameters and @'if its pdf is given by

9 I} f-
} e (pox)’ e x>0
fly=<T(B) (5.3

0. otherwise

B is called the shape parameter, and 6 is called the scale parameter. Several gamma distributions for 6 = |
and various values of B are shown in Figure 5.10a.

| ! | | i i i
0.0 : . - - >
00 02 04 06 0% 10 1.2 14 16 1.8 20 22 24 26 28 30,

Figure 5.10a
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The mean and variance of the gamma distribution are given by

E(X) . (5.35)
6
and
]
ViX)y=—- (5.30)
-
The cdf of X is given by
I—Jm-—/fg—(ﬁer)'“ eMdr. x>0
F(x)= CT(B) (5.37)

0. x<0

When B is an integer. the gamma distribution is related to the exponential distribution in the following
manner: If the random variable. X. is the sum of (3 indeperdent, exponentially distributed random variables.
cach with parameter f36. then X has a gamma distribution with parameters Band 6. Thus. if

X=X +X ++X, (5.38)
where the pdf of X, is given by

)_(Bmé”\ 20

gLy,
' 0. otherwise

and the X are mutually independent, then X has the pdf given in Equation (5.34). Note that. when B=1 an

exponential distribution results. This result follows from Equation (5.38) or from letting 3= 1 in Equation (5.34).

4. Erlang distribution. The pdf given by Equation (5.34) is often referred to as the Erlang distribution

of order (or number of phases) k when f3 = k, an mteger. Erlang was a Danish telephone engineer who was

an early developer of queueing theory. The Erlang distribut:on could arise in the following context: Consider

a series of & stations that must be passed through in order to complete the servicing of a customer. An addi-

tional customer cannot enter the first station until the customer in process has negotiated all the stations.

Each station has an exponential distribution of service time with parameter & 6. Equations (5.35) and (5.36).

which state the mean and variance of a gamma distribution, are valid regardless of the value of 8. However.

when 3= k. an integer. Equation (5.38) may be used to derive the mean of the distribution in a fairly straight-

torward manner. The expected value of the sum of random variables is the sum of the expected value of each
random variable. Thus,

E(X)=EX +EX,)+--+E(X,)

The expected value of each of the exponentially distributed X is given by 1/k6. Thus,

|
EXy=—mn by g Lt
k6 k6 k6 6

[f the random variables X, are independent. the variance of their sum is the sum of the variances, or

[ 1 | I
— = ——
) (k6)y kB

VX)= -+
(k9)y (k6
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When f= k. a positive integer, the ¢df given by Equation :5.37) may be integrated by parts, giving

I il ‘8
~ ¢ " ke
) pELL

Flo = J e (5.39)
o ,

which is the sum of Poisson terms with mean o = k6. Tables of the cumulative Poisson distribution may be
used to evaluate the cdf when the shape parameter is an integer.

Example 5.19
A college professor of electrical engineering is leaving home for the summer. but would like to have a light
burning at all times to discourage burglars. The professor rigs up a device that will hold two light bulbs. The
device will switch the current to the second bulb if the first bulb fails. The box in which the light bulbs are
packaged says, “Average life 1000 hours. exporentially distributed.”™ The protessor will be gone 90 days
(2160 hours). What is the probability that a light will be burning when the summer is over and the protessor
returns?
The probability that the system will operate at least x hours is called the reliability function R(v):

R0y =1 - F(y)

In this case. the total system lifetime is given by Equation (5.38) with =k = 2 bulbs and A6 = 1/1000 per
hour. so 8= 1/2000 per hour. Thus. F(2160) can be determined from Equation (5.39) as follows:

i SR PRI TN LT ) 5 .
. ’ 231/ 20000 2160)
F160)=1-3 (2 Wl

(]

s (2.16)
=l-¢ ""'Z( O 0636

1
i L

a
1.

Therefore. the chances are about 36% that a light will be burning when the professor returns.

Example 5.20 R e
A medical examination is given in three stages by a physician. Each stage is exponentially distributed with
4 mean service time of 20 minutes. Find the probability that the exam will take 50 minutes or less. Also.
compute the expected length of the exam. In this case. k = 1 stages and & 8 = 1/20. so that 6 = 1/60 per minute.
Thus. F(50) can be calculated from Equation (5.39) as follows:

2 hlienuse 3 () ;) '
F(50) = “"Zf [<,l)(1/f» IR

'
G L.

:1._2:‘5:(_"2_

o it
The cumulative Poisson distribution, shown in Table A4, can be used to calculate that
F(50)=1-0.543=0.457

The probability is 0.457 that the exam will take 50 minutes or less. The expected length of the exam is found
from Equation (5.35):

= —— = 60 minutes
8 1/60
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in addition. the variance of X is V(X) = 1/B67 = 1200 minutes’ —incidentatly. the mode of the Erlang

agistribution is given by

Modde = kol (540
1%,

Thus, the modal value in this example is

31 .
Mode = ———— = 30 minutes
Ay 60)

S. Normal distribution. A random variable X with mean —eo < 11 < e and variance 6° > 0 has a normal

distribution if it has the pdf

: ffx—py
FX) = —==2xp —;(—~—— L e y o (5.41)

I'he normal distribution is used so often that the notation X ~ N(u. 67°) has been adopted by many authors to
mdicate that the random variable X is normally distributed with mean g and variance . The normal pdf is

shown in Figure 5.11.
Some of the special propertics of the nermal distribution are listed here:

Lolim | fio=0and im /() =0: the value of 1o approaches zero as . approaches negative
infinity and, similarly. as v approaches positive infinity.

2. fip =) = flu + x): the pdf is symmetric about g1,

3. The maximum value of the pdf occurs at v == g the mean and mode are equal.

The cdf for the normal distribution is given by

\ 7 I(r-uy
F(A\'):P(XS.\‘):J‘ =eXp ~r;~[ -4—] dr (5.42)

oN2rm
Itis not possible to evaluate Equation (5.427 in closed form. Numerical methods could be used. but it appears

that it would be necessary to evaluate the integral for cach pair (g, o). However, a transformation of

FARY

u

Figure 5.11 pdt of the normal distribution.
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variables. 2 = (1 — /0. allows the evaluation to be independent of 1t and o. X ~Nu, o) letZ=(X - /o
to obtain

lkmzlﬂxgx):P(zgfiﬂj

:ft " ?/é—;e s
= [ oo = <1>(-’5;—H)

The pdf

1 2
()= —==¢"

J2r

is the pdf of a normal distribution with mean zero and variance 1. Thus. Z ~ N(O, 1) and it is said that Z has
4 standard normal distribution. The standard normal distribution is shown in Figure 5.12. The cdf for the

7D

—oo L 1< (544

standard normal distribution is given by

®(o) = | j\/%;f' e (3431

Equation (5.45) has been widely tabulated. The probabilitics ®(2) for Z > 0 are given in Table A3,
Several examples are now given that indicate how Equation (5.43) and Table A.3 are used.

Example 5.21 i
Suppose that it is known that X ~ N(50. 9). Compute F(56) = P(X < 56). Using Equation (5.43) get

. 56 - 50
F(56)=®| -

) d(2)=0.9772

from Table A.3. The intuitive interpretation is shown in Figure 5.13. Figure 5.13(a) shows the pdf of X ~ N(50.9)
with the specific value, x, = 56, marked. The shaded portien is the desired probability. Figure 5.13(b) shows the
standard normal distribution or Z ~ N0, 1) with the value 2 marked: x, = 56 is 20 (where 0 = 3) greater than
the mean. It is helptul to make both sketches such as those in Figure 5.13 to avoid confusion in figuring out
required probabilities.

@)

-

=0

Figure 5.12 pdf of the standard normal distribution.
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Figure 5.13 Transforming to the standard normal distribution.

Example 5.22 i —
The time in hours required to load an oceangoing vessel. X, is distributed as N(12.4). The probability that
the vessel will be loaded in less than 10 hours is given by F710), where

. 10-12
F0)=d —3 =@(—1)=0.1587

“~

The value of @ (1) = 0.1587 is looked up in Table A.3 by using the sy mmetry property of the normal dis-
tribution. Note that @ (1) = 0.8413. The complement of 0.8413. or 0.1587. is contained in the tail. the shaded
portion of the standard normal distribution shown in Figure 5.14(a). In Figure 5.14(b). the symmetry property
i~ used to work out the shaded region to be ®(=1) == 1 = @ (1) = 0.1587. [From this logic. it can be seen that
®(2)=09772 and P(=2) = | = d(2) = 0.0228. In general, P(—x) = | — d(v).]

The probability that 12 or more hours will be required to load the ship can also be discovered by
mspection, by using the symmetry property of the normal pdf and the mean as shown by Figure 5.15.
I'he shaded portion of Figure 5.15(ay shows the problem as originally stated |i.c.. evaluate P(X < 12)]. Now.
PIX > 12) =1 - F(12). The standardized normal in Figure S 15(b) is used to evaluate F(12) = d(0) = (.50,
Thus. P(X > 12) =1 = 0.50 = 0.50. [ The shaded portions in both Figure 5.15(a) and (b) contain 0.50 of the
arca under the normal pdf.)

The probability that between 10 and 12 hours will be required 10 load a ship is given by

PAOSX < 12)=F(12) = F(10) = 0.5000 - 0.1587 = 0.3413

using earlier results presented in this example. The desired area is shown in the shaded portion of
Figure 5.16(a). The equivalent problem shown in terms of the standardized normal distribution is shown in
Figure 5.16(b). The probability statement is £(12) = F(10) = G 0) = D (1) = 0.5000 — 0.1587 - (0.341 3. from
luble A3
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0.1587

?Z

@ (2)

0.1587

Figure 5.14 Using the symmetry property of the normal distribution.

fin

Figure 5.15 Evaluation of probability by inspection.
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0.3413 ol 4
17\
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10 =12 v
(a)

@ ()

0.3413

Figure 5.16 Transformation to standard normal for vessel-loading problem.

Example 5.23 .
The time to pass through a queue to begin self-service at a cateteria has been found to be N(15. 9). The
probability that an arriving customer waits between 14 and 17 minutes is computed as follows:

715 4-15)
P(MSXS17):F(l7)—F(14)=<b(l 1")41)(' ;] )

=®(0.667)—d(-0.333)

The shaded area shown in Figure 5.17(a) represents the probability F(17) — Ft14). The shaded arca shown
in Figure 5.17(b) represents the equivalent probability, ®(0.667) — ®(-0.333). for the standardized normal
distribution. From Table A.3, ®(0.667) = (0.7476. Now, ®(-0.333) = | — ®(0.333) = | — 0.6304 = 0.3696.
Thus, ®(0.667) — ®(-0.333) = 0.3780. The probability is 0.3780 that the customer will pass through the
queue in a time between 14 and 17 minutes.

Example 5.24 - ; I
Lead-time demand. X, for an item is approximated by a normal distribution having mean 25 and variance 9.
It is desired to compute the value for lead time that will be exceeded only 5% of the time. Thus, the prob-
lem is to find ., such that P(X > x ) = 0.05, as shown by the shaded area in Figure 5.18(a). The equivalent
problem is shown as the shaded area in Figure 5.18(b). Now.

'rr) _25 O
PX > x,) = P| Z> == = 1= @) === =005
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fx)

03780

D)

A
//

7

.0.3780

(1.333

=0

(b)

(.667

Figure 5.17 Transformatior to standard normal for cafeteria problem.

0.05

=25

()

@D (2)

Rt

"=
(b)

Figure 5.18 Finding x, for lead-time-demand problem.
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or, equivalently,

x, =25
(D(—‘ ]: (.95
3

From Table A.3. it can be seen that ®(1.645) = 0.95. Thus, x, can be found by solving

or

Therefore, in only 5% of the cases will demand during lead time exceed available inventory if an order to
purchase is made when the stock level reaches 30.
6. Weibull distribution. The random variable X has a Weibull distribution if its pdf has the form

Bt 3
=V =V
I e R e
floy=qal o o (5.46)

0. otherwise

The threc parameters of the Weibull distribution are v (—eo < v < o). which is the location parameter:
o (o> 0), which is the scale parameter: and § (> 0). which is the shape parameter. When v =0, the Weibull

pdf becomes
3( « - N iR
) ,/,(L) exp| — L) .20
fto=qa\ o 0] (5.47)

0, otherwise

Figure 5.19 shows several Weibull densities when v =0 and = 1. When 8= 1. the Weibull distribution is
reduced to

i J-'—e YYoxz20
fo=1a
[ otherwise

which is an exponential distribution with parameter A = l/a.
The mean and variance of the Weibull distribution arc given by the following expressions:

1
F(X):= v+a[’[ﬁ+l] (5.48)

r(ngl)] (5.49)

)
ViXy=a [T l+l]—
B
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Figure 5.19 Weibull pdfs for v =00 = ]-:/5 =

where T'(0) 1s defined by Equation (5.31). Thus. the location parameter. v, has no ctfect on the variance:
however. the mean is increased or decreased by v, The ¢d! of the Weibull distribution is given by

Example 5.25
The time o failure for a component screen is known to have a Weibull distribution with v =0, $= 1/3, and
¢ = 200 hours. The mean time to tailure is given by Equation (5.48) as

(X)) = 200173 + 1) = 200(3!) = 1200 hours

The probability that a umit tails before 2000 hous is computed trom Equation (5.50) as

‘ 2000 |
FR2000) =1 —exp| —| ——— }
~00 !

3

mlme Yo LT 2 (0884

Example 5.26 .
The time 1t takes for an aircraft to fand and clear the runway at a major international airport has a Weibull
distribution with v = 1.34 minutes. ff= 0.5, and « = 0.04 mincte. Find the probability that an incoming
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airplane will take more than 1.5 minutes to land and clear the runway. In this case P(X > 1.5) is computed
as follows:

P(X <1.5)=F(L.5)

1.5-1.34)"
B I aryven

=1-e’=1-0.135=0.865

Therefore, the probability that an aircraft will require more than 1.5 minutes to land and clear the runway
is 0.135.
7. Triangular distribution. A random variable X has a triangular distribution if its pdf is given by

_2xma)
(b—a)c—a)
f)y=3 2c-x)  hex<e (5.51)
(c=b)c—a)
0, elsewhere

where a < b < ¢. The mode occurs at x = b. A triangular pdf is shown in Figure 5.20. The parameters (a, b, c)
can be related to other measures, such as the mean and the mode. as follows:

a+b+c

E(X)= (5.52)
From Equation (5.52) the mode can be determined as
Mode = b =3E(X) - (a +¢) (5.53)

Because a < bh < ¢,

2a+c <E(X)< 4(1-;2(‘

f(x)

- Height = 2/(¢ — a)

1
)
I -
w
i
|

a b

Figure 5.20 pdf of the triangular distribution.
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The mode is used more often than the mean to characterize the triangular distribution. As is shown in
Figure 5.20, its height is 2/(¢ — a) above the x axis. The variance, V(X), of the triangular distribution is left
as an exercise for the student. The cdf for the triangular distribution is given by

0. x<u
(x—_a)'__‘ a<x<bh
Flay=| P (5.54)
lf—i—_—-iw. b<x<c
(c—b)c—a)
1, xX>c

Example 5.27
The central processing unit requirements. for programs that will execute. have a triangular distribution with
a = 0.05 millisecond, b = 1.1 milliseconds, and ¢ = 6.5 milliseconds. Find the probability that the CPU
requirement for a random program is 2.5 milliseconds or less. The value of F(2.5) is from the portion of the
cdf in the interval (0.05. 1.1) plus that portion in the interval (1.1, 2.5). By using Equation (5.54), both
portions can be addressed at one time, to yield

N

. (6.5-2.5)
FQS5)=1- . =0.541
(6.5-0.05)(6.5-1.1)

Thus, the probability is 0.541 that the CPU requirement is 2.5 milliseconds or less.

Example 5.28
An electronic sensor evaluates the quality of memory chips. rejecting those that fail. Upon demand, the sen-
sor will give the minimum and maximum number of rejects during each hour of production over the past
24 hours. The mean is also given. Without further information, the quality control department has assumed
that the number of rejected chips can be approximated by a triangular distribution. The current dump of data
indicates that the minimum number of rejected chips during any hour was zero, the maximum was 10, and
the mean was 4. Given that a = 0, ¢ = 10. and E(X) = 4, the value of b can be found from Equation (5.53):

h=34)—-(0+10)=2

The height of the mode is 2/(10 — 0) = 0.2, Thus. Figure 5.21 can be drawn.

The median is the point at which 0.5 of the area is to the left and 0.5 is to the right. The median in this
example is 3.7, also shown on Figure 5.21. Finding the median of the triangular distribution requires an
initial location of the value to the left or to the right of the mode. The area to the left of the mode is computed
from Equation (5.54) as

Thus. the median is between b and ¢. Setting F(x) = 0.5 in Equation (5.54) and solving for x = median yields

(10-x)

05=1-—
(10)(8)

with
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Figure 5.21 Mode, median, and mean for triangular distribution.

This example clearly shows that the mean, mode, and median are not necessarily equal.
8. Lognormal distribution. A random variable X has a lognormal distribution if its pdf is given by

] (Inx —,u):
exp| — ; .ox>0
f(x)=32nox 20° (5.55)

0, otherwise

where 02 > 0 The mean and variance of a lognormal random variable are
E(X)=e" " (5.56)
V(X)=e" (€ - 1) (5.57)

Three lognormal pdf’s, all having mean 1, but variances 1/2, 1, and 2, are shown in Figure 5.22.

1.5

l —5

0.5
0 1 2 3

Figure 5.22 pdf of the lognormal distribution.
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Notice that the parameters ¢ and ¢ are not the mean and variance of the lognormal. These parameters
come from the fact that when Y has a N(u, ¢?) distribution then X = ¢* has a lognormal distribution with
parameters i and o, If the mean and variance of the lognormal are known to be 4, and o/, respectively,
then the parameters u and o2 are given by

p= In(L—] (5.58)
VH O]

5 .(.u_) (5.59)
H;

Example 5.29
The rate of return on a volatile investment is modeled as having a lognormal distribution with mean 20% and
standard deviation 5%. Compute the parameters for the lognormal distribution. From the information given,
we have g, = 20 and o = 5%. Thus, from Equations (5.58) and (5.59).

u= ln(——}L] =2.9654

V20 +5°

o’ =1n[20-+5-)i0.06

Py

20°

9. Beta distribution. A random variable X is beta-distributed with parameters f3, > 0 and 8, > 0 if its pdf
is given by
Bl B!
A_u__._ s 0 <X < l
fo=1 BB.B) (5.60)

0, otherwise

3.0

2.5

2.0

fx)
“n
|

1.0

0.5

0.0

Figure 5.23 The pdf's for several beta distributions.
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where B(S,, B,) = T(B)T(B)/T(B, + B,). The cdf of the beta does not have a closed form in general.

The beta distribution is very flexible and has a finite range from 0 to 1, as shown in Figure 5.23. In prac-
tice, we often need a beta distribution defined on a different range, say (a, b), with a < b, rather than (0, 1).
This is easily accomplished by defining a new random variable

Y=a+(b-a)X

The mean and variance of Y are given by

B, )
A vy 5.61
’ a[ﬂﬁﬁ: (5.61)
and
2 ﬂ]ﬁv )
b= "B, 5.62
! [(ﬁ|+l31)‘(ﬁ,+ﬂz+1) (5.62)

5.5 POISSON PROCESS

Consider random events such as the arrival of jobs at a job shop, the arrival of e-mail to a mail server, the
arrival of boats to a dock, the arrival of calls to a call center, the breakdown of machines in a large factory,
and so on. These events may be described by a counting function N(r) defined for all = 0. This counting
function will represent the number of events that occurred in [0, r]. Time zero is the point at which the obser-
vation began, regardless of whether an arrival occurred at that instant. For each interval [0, ], the value N(r)
is an observation of a random variable where the only possible values that can be assumed by N(¢) are the
integers 0, 1, 2,....

The counting process, {N(t), ¢ 2 0}, is said to be a Poisson process with mean rate A if the following
assumptions are fulfilled:

1. Arrivals occur one at a time.

2. {N(), r = 0} has stationary increments: The distribution of the number of arrivals between r and ¢ + s
depends only on the length of the interval s, not on the starting point ¢. Thus, arrivals are completely
at random without rush or slack periods.

3. {N(1), t 2 0} has independent increments: The number of arrivals during nonoverlapping time inter-
vals are independent random variables. Thus, a large or small number of arrivals in one time interval
has no effect on the number of arrivals in subsequent time intervals. Future arrivals occur completely
at random, independent of the number of arrivals in past time intervals.

If arrivals occur according to a Poisson process, meeting the three preceding assumptions, it can be
shown that the probability that N(¢) is equal to n is given by

e—ly(}'[)n
P[N(t)zn]=—7- fortr>0and n=0,1,2,... (5.63)
n!

Comparing Equation (5.63) to Equation (5.19), it can be seen that N(¢) has the Poisson distribution with
parameter @ = Ar. Thus, its mean and variance are given by

E[N()] = aa= At = V[N(1)]
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Figure 5.24 Arrival process.

For any times s and 7 such that s < r, the assumption of stationary increments implies that the random
variable N(1) — N(s), representing the number of arrivals in the interval from s to ¢, is also Poisson-distributed
with mean A(f — s). Thus,

AYET] R U
P[N(z)—N(s)=n;="———M forn=0,1,2,...
n

and
E[N(t) — N(s)] = A(t — 5) = V[N(1) — N(s)}

Now, consider the time at which arrivals occur in a Poisson process. Let the first arrival occur at time
A, the second occur at time A + A,, and so on, as shown in Figure 5.24. Thus, A, A,,... are successive
interarrival times. The first arrival occurs after time 1 if and only if there are no arrivals in the interval {0, ¢],
s0 it 1s seen that

(A, >1)={N()=0)
and, therefore,
P(A >1)=P[N({t)=0]=e¢™"

the last equality following from Equation (5.63). Thus, the probability that the first arrival will occur in [0, ¢]
1 given by

P(A <sty=1-¢™

which is the cdf for an exponential distribution with parameter A. Hence, A, is distributed exponentially with
mean E(A,)=1/A. It can also be shown that all interarrival times. A, A,,..., are exponentially distributed
and independent with mean 1/A. As an alternative definition of a Poisson process, it can be shown that, if
interarrival times are distributed exponentially and independently, then the number of arrivals by time ¢, say
N(1), meets the three previously mentioned assumptions and, therefore, is a Poisson process.

Recall that the exponential distribution is memoryless—that is, the probability of a future arrival in a
time interval of length s is independent of the time of the last arrival. The probability of the arrival depends
only on the length of the time interval, s. Thus, the memoryless property is related to the properties of inde-
pendent and stationary increments of the Poisson process.

Additional readings concerning the Poisson process may be obtained from many sources, including
Parzen [1999], Feller {1968], and Ross {2002].

Example 5.30
The jobs at a machine shop arrive according to a Poisson process with a mean of A = 2 jobs per hour.
Therefore, the interarrival times are distributed exponentially, with the expected time between arrivals being
E(A)=1/A= % hour.
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5.5.1 Properties of a Poisson Process

Several properties of the Poisson process. discussed by Ross [2002] and others, are useful in discrete-system
simulation. The first of these properties concerns random splitting. Consider a Poisson process {N(1). 1 2 0}
having rate A, as represented by the left side of Figure 5.25.

Suppose that, each time an event occurs, it is classified as cither a type 1 or a type 1I event. Suppose
further that each event is classified as a type 1 event with probability p and type Il event with probability I —p,
independently of all other events.

Let N (1) and N,(t) be random variables that denote. respectively, the number of type I and type 11 events
occurring in [0, 7]. Note that N(7) = N1 + Ny(D. It can be shown that V(.. ind N,(1) are both Poisson
processes having rates Ap and A(1 — p), as shown in Figure 5.25. Furlhumore it can be shown that the two
processes are independent.

Example 5.31: (Random Splitting)
Suppose that jobs arrive at a shop in accordance with a Poisson process having rate A. Suppose further that
each arrival is marked “high priority™ with probability 1/3 and “low priority” with probability 2/3. Then
a type I event would correspond to a high-priority arrival and a type Il event would correspond to a low-
priority arrival. If N,(1) and N,(1) are as just defined, both variables follow the Poisson process, with rates
Al3 and 24/3, respectively.

Example 5.32
The rate in Example 5.31 is 4 = 3 per hour. The probability that no high-priority jobs will arrive in a 2-hour
period is given by the Poisson dlstribulion with parameter o = Apt = 2. Thus,

,"2n

PO) = =
0

=(.135

Now, consider the opposite situation from random splitting, namely the pooling of two arrival streams.
The process of interest is illustrated in Figure 5.26. It can be shown that, if N (1) are random variables repre-
senting independent Poisson processes with rates A, for i = 1 and 2, then N(r) = N,(1) + N,(f) is a Poisson
process with rate A, + A4,.

Example 5.33: (Pooled Process)
A Poisson arrival stream with A, = 10 arrivals per hour is combined (or pooled) with a Poisson arrival stream
with A, = 17 arrivals per hour. Thc combined process is a Poisson process with A = 27 arrivals per hour.

Figure 5.25 Random splitting.

-,
A+ A
et el
/

Figure 5.26 Pooled process.



168 DISCRETE-EVENT SYSTEM SIMULATION

5.5.2 Nonstationary Poisson Process

If we keep the Poisson Assumptions | and 3, but drop Assumption 2 (stationary increments) then we have
a nonstationary Poisson process (NSPP), which i.: characterized by A(r), the arrival rate at time r. The NSPP
1s useful for situations in which the arrival rate varies during the period of interest, including meal times for
restaurants, phone calls during business hours, and orders for pizza delivery around 6 p.M.

The key to working with a NSPP is the expected number of arrivals by time 7, denoted by

/\l't)zj(: Als)ds

To be useful as an arrival-rate function, A(r) must be nonnegative and integrable. For a stationary Poisson
process with rate A we have A (1) = Az, as expected.

Let 7|, T,, ... be the arrival times of stationary Poisson process N(r) with A= 1, and let 7, 7,, ... be the
arrival times for a NSPP A/(r) with arrival rate A(¢). The fundamental relationship for working with NSPPs
is the following:

AT)
ANT)

NS
[

In words, an NSPP can be transformed into a stationary Poisson process with arrival rate 1, and a stationary
Poisson process with arrival rate 1 can be transformed into an NSPP with rate A(r), and the transformation
in both cases is related to A(r).

Example 5.34
Suppose that arrivals to a Post Office occur at a rate of 2 per minute from 8 aA.M. until 12 p.M., then drop to
I every 2 minutes until the day ends at 4 p.M. What is the probability distribution of the number of arrivals
between 11 AM. and 2 p.M?

Let time ¢ = 0 correspond to 8 A.M. Then this situation could be modeled as a NSPP A{#) with rate
function

fe—

Alt) =

B |

The expected number of arrivals by time ¢ is therefore

2t, 0<t<4
A(r) =
§+6, 4<1<8

Notice that computing the expected number of arrivals for 4 <t < 8 requires that the integration be done in
two parts:

[ arader ge it
A= [ As)ds = [ 2ds+ [ Las = S+0

Since 2 pM. and 11 A.M. correspond to times 6 and 3, respectively, we have
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PIN(6)—=N3)=k]=P[N(A6))— N(AQ3)) = k]
= P[N(9)-N(6) = k]
B & 9-6)
=
_ ()}(3)A
ok

where N(1) is a stationary Poisson process with arrival rate 1.

5.6 EMPIRICAL DISTRIBUTIONS

An empirical distribution, which may be either discrete or continuous in form, is a distribution whose param-
eters are the observed values in a sample of data. This is in contrast to parametric distribution families (such
as the exponential, normal, or Poisson), which are characterized by specifying a small number of parameters
such as the mean and variance. An empirical distribution may be used when it is impossible or unnecessary
to establish that a random variable has any particular parametric distribution. One advantage of an empirical
distribution is that nothing is assumed beyond the observed values in the sample; however, this is also a dis-
advantage because the sample might not cover the entire range of possible values.

Example 5.35: (Discrete)
Customers at a local restaurant arrive at lunchtime in groups of from one to eight persons. The number of
persons per party in the last 300 groups has been observed; the results are summarized in Table 5.3. The rel-
ative frequencies appear in Table 5.3 and again in Figure 5.27, which provides a histogram of the data that
were gathered. Figure 5.28 provides a cdf of the data. The cdf in Figure 5.28 is called the empirical distri-
bution of the given data.

Example 5.36: (Continuous)
The time required to repair a conveyor system that has suffered a failure has been collected for the last 100
instances; the results are shown in Table 5.4. There were 21 instances in which the repair took between 0 and
0.5 hour, and so on. The empirical cdf is shown in Figure 5.29. A piecewise linear curve is formed by the
connection of the points of the form [x, F(x)]. The points are connected by a straight line. The first connected
pair is (0, 0) and (0.5, 0.21): then the points (0.5, 0.21) and (1.0, 0.33) are connected; and so on. More detail
on this method is provided in Chapter 8.

Table 5.3 Arrivals per Party Distribution

Arrivals per Relative Cumulative Relative
Party Frequency Frequency Frequency
1 30 0.10 0.10
2 110 0.37 0.47
3 45 0.15 0.62
4 71 0.24 0.86
5 12 0.04 0.90
6 13 0.04 0.94
7 7 0.02 0.96
8 12 0.04 1.00
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Figure 5.27 Histogram of party size.
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Figure 5.28 Empirical cdf of party size.

Table 5.4 Repair Times for Conveyor

Relative Cumulative
Interval (Hours) Frequency Frequency Frequency

0<x<0.5 21 0.21 0.21
05<x<1.0 12 0.12 0.33
1.0<x<15 29 0.29 0.62
1.5<x<20 19 0.19 0.81
20<x<25 8 0.08 0.89
25<x<30 11 0.11 1.00
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Figure 5.29 Empirical cdf for repair times.

5.7 SUMMARY

In many instances, the world the simulation analyst sees is probabilistic rather than deterministic. The pur-
poses of this chapter were to review several important probability distributions, to familiarize the reader with
the notation used in the remainder of the text. and to show applications of the probability distributions in a
simulation context.

A major task in simulation is the collection and analysis of input data. One of the first steps in this task
is hypothesizing a distributional form for the input data. This is accomplished by comparing the shape of the
probability density function or mass function to a histogram of the data and by an understanding that certain
physical processes give rise to specific distributions. (Computer software is available to assist in this effort,
as will be discussed in Chapter 9.) This chapter was intended to reinforce the properties of various distribu-
tions and to give insight into how these distributions arise in practice. In addition, probabilistic models of
input data are used in generating random events in a simulation.

Several features that should have made a strong impression on the reader include the differences
between discrete, continuous, and empirical distributions; the Poisson process and its properties; and the
versatility of the gamma and the Weibull distributions.
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EXERCISES
1. Of the orders a job shop receives, 25% are welding jobs and 75% are machining jobs. What is the
probability that

(a) half of the next five jobs will be machining jobs?
(b) the next four jobs will be welding jobs?

2. Three different items are moving together in a conveyor. These items are inspected visually and defec-
tive items are removed. The previous production data are given as

Item A Item B Item C

Accepted 25 280 190
Rejected 975 720 810

What is the probability that

(a) one item is removed at a time”?
(b) two items are removed at a time?
(¢) three items are removed simultaneously”

3. A recent survey indicated that 82% of single women aged 25 years old will be married in their lifetime.
Using the binomial distribution, find the probability that two or three women in a sample of twenty will
never be married.

4. The Hawks are currently winning 0.55 of their games. There are 5 games in the next two weeks. What
is the probability that they will win more games than they lose?

5. Joe Coledge is the third-string quarterback for the University of Lower Alatoona. The probability that
Joe gets into any game is 0.40.

(a) What is the probability that the first game Joe enters is the fourth game of the season?
(b) What is the probability that Joe plays in no more than two of the first five games?

6. For the random variables X, and X,, which are exponentially distributed with parameter A = 1, compute
P(X, + X,>2).

7. Show that the geometric distribution i1s memoryless.
8. Hurricane hitting the eastern coast of India follows Poisson with a mean of 0.5 per year. Determine

(a) the probability of more than three hurricanes hitting the Indian eastern - nast in a year.
(b) the probability of not hitting the Indian eastern coast in a year.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Students’ arrival at a university library follows Poisson with a mean of 20 per hour. Determine

(a) the probability that there are 50 arrivals in the next 1 hour.
(b) the probability that no student arrives in the next 1 hour.
(c¢) the probability that there are 75 arrivals in the next 2 hours.

Records indicate that 1.8% of the entering students at a large state university drop out of school by
midterm. What is the probability that three or fewer students will drop out of a random group of 200
entering students?

Lane Braintwain is quite a popular student. Lane receives, on the average, four phone calls a night
(Poisson distributed). What is the probability that, tomorrow night, the number of calls received will
exceed the average by more than one standard deviation?

A car service station receives cars at the rate of 5 every hour in accordance with Poisson. What is the
probability that a car will arrive 2 hours after its predecessor?

A random variable X that has pmf given by p(x) = 1/(n+1) over the range R, = {0, 1, 2,..., n} is said to
have a discrete uniform distribution.

(a) Find the mean and variance of this distribution. Hint:

n " ) ’)
D
=l i=

(b) If Ry={a,a+1,a+2,..., b}, compute the mean and variance of X.

The lifetime, in years, of a satellite placed in orbit is given by the following pdf:
04e™, x>0
flx)= :
0. otherwise

(@) Whatis the probability that this satellite is still “alive” after 5 years?
(b) What s the probability that the satellite dies between 3 and 6 years from the time it is placed in orbit?

The cars arriving at a gas station is Poisson distributed with a mean of 10 per minute. Determine the
number of pumps to be installed if the firm wants to have 50% of arriving cars as zero entries (i.e., cars
serviced without waiting).

(The Poisson distribution can be used to approximate the binomial distribution when n is large and p is
small—say, p less than 0.1. In utilizing the Poisson approximation, let A = np.) In the production of ball
bearings, bubbles or depressions occur, rendering the ball bearing unfit for sale. It has been noted that, on
the average, one in every 800 of the ball bearings has one or more of these defects. What is the proba-
bility that a random sample of 4000 will yield fewer than three ball bearings with bubbles or depressions?

For an exponentially distributed random variable X, find the value of A that satisfies the following
relationship:

PX<3)=09P(X<4)

The time between calls to a fire service station in Chennai follows exponential with a mean of 20 hours.
What is the probability that there will be no calls during the next 24 hours?
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19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

The time to failure of a chip follows exponential with a mean of 5000 hours.

(a) The chip is in operation for the past 1000 hours. What 1s the probability that the chip will be in
operation for another 6000 hours?
(b) After 7000 hours of operation, what is the probability that the chip will not fail for another 2000 hours?

The headlight bulb of a car owned by a professor has an exponential time to failure with a mean of 100
weeks. The professor has fitted a new bulb 50 weeks ago. What is the probability that the bulb will not
fuse within the next 60 weeks?

The service time at the college cafeteria follows exponential with a mean of 2 minutes.

(a) What is the probability that two customers in front of an arriving customer will each take less than
90 seconds to complete their transactions?

(b) What is the probability that two customers in front will finish their transactions so that an arriving
customer can reach the service window within 4 minutes?

Determine the variance, V(X). of the triangular distribution.

The daily demand for rice at a departmental store in thousands of kilogram is found to follow gamma
distribution with shape parameter 3 and scale parameter %2. Determine the probability of demand
exceeding 5000 kg on a given day.

When Admiral Byrd went to the North Pole. he wore battery-powered thermal underwear. The batter-
ies failed instantaneously rather than gradually. The batteries had a life that was exponentially distrib-
uted, with a mean of 12 days. The trip took 30 days. Admiral Byrd packed three batteries. What is the
probability that three batteries would be a number sufticient to keep the Admiral warm?

In an organization’s service-complaints mail box, interarrival time of mails are exponentially distributed
with a mean of 10 minutes. What is the probability that five mails will arrive in 20 minutes duration?

The rail shuttle cars at Atlanta airport have a dual electrical braking system. A rail car switches to the
standby system automatically if the first system fails. If both systems fail. there will be a crash! Assume
that the life of a single electrical braking system is exponentially distributed, with a mean of 4,000 oper-
ating hours. If the systems are inspected every 5,000 operating hours, what is the probability that a rail
car will not crash before that time?

Suppose that cars arriving at a toll booth follow a Poisson process with a mean interarrival time of
15 seconds. What is the probability that up to one minute will elapse until three cars have arrived?

Suppose that an average of 30 customers per hour arrive at the Sticky Donut Shop in accordance with a
Poisson process. What is the probability that more than 5 minutes will elapse before both of the next
two customers walk through the door?

Professor Dipsy Doodle gives six problems on each exam. Each problem requires an average of
30 minutes grading time for the entire class of 15 students. The grading time for each problem 1s expo-
nentially distributed, and the problems are independent of each other.

(a) What is the probability that the Professor will finish the grading in 2% hours or less?
(b) What is the most likely grading time?
(c) What is the expected grading time?
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30.

31.
32.

33.

3.

35.

36.

37.

An aircraft has dual hydraulic systems. The aircraft switches to the standby system automatically if the
first system fails. If both systems have failed, the plane will crash. Assume that the life of a hydraulic
system is exponentially distributed, with a mean of 2000 air hours.

(a) If the hydraulic systems are inspected every 2500 hours, what is the probability that an aircraft will
crash before that time?
(b) What danger would there be in moving the inspection point to 3000 hours?

Show that the beta distribution becomes the uniform distribution over the unit interval when B, =B=1

Lead time of a product in weeks is gamma-distributed with shape parameter 2 and scale parameter 1.
What is the probability that the lead time exceeds 3 weeks?

Lifetime of an inexpensive video card for a PC, in months, denoted by the random variable X, is gamma-
distributed with f=4 and 8= 1/16. What is the probability that the card will last for at least 2 years?

In a statewide competitive examination for engineering admission, the register number allotted to the
candidates is of the form CCNNNN, where C is a character like A, B, and C, etc., and N is a number
from 0 to 9. Assume that you are scanning through the rank list (based on marks secured in the competitive
examination), what is the probability that

(a) the next five entries in the list will have numbers 7000 or higher?
(b) the next three entries will have numbers greater than 30007?

Let X be a random variable that is normally distributed, with mean 10 and variance 4. Find the values a
and b such that P(a < X < b) = 0.90 and |u—a| = |u-b|.

Given the following distributions,

Normal (10, 4)

Triangular (4, 10, 16)

Uniform (4, 16)

find the probability that 6 < X < 8 for each of the distributions.

Demand for an item follows normal distribution with a mean of 50 units and a standard deviation of
7 units. Determine the probabilities of demand exceeding 45, 55, and 65 units.

The annual rainfall in Chennai is normally distributed with mean 129 cm and standard deviation 32 ¢m.

(a) What is the probability of getting excess rain (i.e., 140 cm and above) in a given year?
(b) What is the probability of deficient rain (i.e., 80 cm and below) in a given year?

Three shafts are made and assembled into a linkage. The length of each shaft, in centimeters, is
distributed as follows:

Shaft 1: N(60, 0.09)
Shaft 2: N(40, 0.05)
Shaft 3: N(50, 0.11)

(a) What is the distribution of the length of the linkage?
(b) What is the probability that the linkage will be longer than 150.2 centimeters?
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40.

41.

42,

43.

45.

(¢) The tolerance limits for the assembly are (149.83, 150.21). What proportion of assemblies are
within the tolerance limits? (Hint: If {X,} are n independent normal random variables, and if X, has
mean g, and variance o, then the sum

Y=X+X,+-+X,
. . " . n Bl
is normal with mean 2_1 M, and variance 2,;. o)
The circumferences of battery posts in a nickel-cadmium battery are Weibull-distributed with v = 3.25
centimeters, 8= 1/3, and a = 0.005 centimeters.

(a) Find the probability that a battery post chosen at random will have a circumference larger than 3.40
centimeters.

(b) If battery posts are larger than 3.50 centimeters, they will not go through the hole provided; if they
are smaller than 3.30 centimeters, the clamp will not tighten sufficiently. What proportion of posts
will have to be scrapped for one of these reasons?

The time to failure of a nickel- cadmium battery is Weibull distributed with parameters v =0, S = 1/4.
and a = 1/2 years.

(a) Find the fraction of batteries that are expected to fail prior to 1.5 years.
(b) What fraction of batteries are expected to last longer than the mean life?
(c) What fraction of batteries are expected to fail between 1.5 and 2.5 years?

The time required to assemble a component follows triangular distribution with « = 10 seconds and ¢ =
25 seconds. The median is 15 seconds. Compute the modal value of assembly time.

The time to failure (in months) of a computer follows Weibull distribution with location parameter = 0.
scale parameter = 2, and shape parameter = 0.35.

(a) What is the mean time to failure?

(b) What is the probability that the computer will fail by 3 months?

The consumption of raw material for a fabrication firm follows triangular distribution with minimum of
200 units. maximum of 275 units, and mean of 220 units. What is the median value of raw material
consumption?

A postal letter carrier has a route consisting of five segments with the time in minutes to complete each
segment being normally distributed, with means and variances as shown:

Tennyson Place N(38.16)
Windsor Parkway N(99, 29)
Knob Hill Appartments N(85, 25)
Evergreen Drive N(73. 20)

Chastain Shopping Center N(52.12)

In addition to the times just mentioned, the letter carrier must organize the mail at the central office.
which activity requires a time that is distributed by N(90, 25). The drive to the starting point of the route
requires a time that is distributed N(10, 4). The return from the route requires a time that is distributed
N(15, 4). The letter carrier then performs administrative tasks with a time that is distributed N(30, 9).

(a) What is the expected length of the letter carrier’s work day?
(b) Overtime occurs after eight hours of work on a given day. What is the probability that the letter
carrier works overtime on any given day?
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46.

47.

48.

49.

(c) What is the probability that the letter carrier works overtime on two or more days in a six-day week?”
(d) What is the probability that the route will be completed within £24 minutes of cight hours on any
given day? (Hint: See Exercise 39.)

The light used in the operation theater of a hospital has two bulbs. One bulb is sufficient to get the
necessary lighting. The bulbs are connected in such a way that when one fails. automatically the other
gets switched on. The life of each bulb is exponentially distributed with a mean of 5000 hours and the
lives of the bulbs are independent of one another. What is the probability that the combined life of the
light is greater than 7000 hours?

High temperature in Biloxi, Mississippi on July 21. denoted by the random variable X, has the follow-
ing probability density function, where X is in degrees F.

2(x —85)
119
Fx)=192(102 - x)
170
0, otherwise

85<x <92

92 < v <102

(a) What is the variance of the temperature, V(X)? (It you worked Exercise 22. this is quite easy.)
(b) What is the median temperature?
(¢) What is the modal temperature?

The time to failure of Eastinghome light bulbs is Weibull distributed with v = 1.8 % 10" hours. = 1/2.
and o = 1/3 x 10? hours.

(a) What fraction of bulbs are expected to last longer than the mean lifetime?
(b) What is the median lifetime of a light bulb?
Let time ¢ = 0 correspond to 6 A.M., and suppose that the arrival rate (in arrivals per hour) of customers
to a breakfast restaurant that is open from 6 to 9 A.M. is
30, 0<r<l
Ary=445. 1<r<2
20, 2<r<4

Assuming a NSPP model is appropriate, do the tollowing: (a) Derive A(r). (b) Compute the expected
number of arrivals between 6:30 and 8:30 a.M. (¢) Compute the probability that there are tewer than 60
arrivals between 6:30 and 8:30 A.M.



Queueing Models

Simulation is often used in the analysis of queueing models. In a simple but typical queueing model, shown
in Figure 6.1, customers arrive from time to time and join a queue (waiting line), are eventually served, and
finally leave the system. The term “customer™ refers to any type of entity that can be viewed as requesting
“service” from a system. Therefore, many service facilities, production systems, repair and maintenance
facilities, communications and computer systems, and transport and material-handling systems can be
viewed as queueing systems.

Queueing models, whether solved mathematically or analyzed through simulation, provide the analyst
with a powerful tool for designing and evaluating the performance of queueing systems. Typical measures
of system performance include server utilization (percentage of time a server is busy), length of waiting
lines, and delays of customers. Quite often, when designing or attempting to improve a queueing system, the
analyst (or decision maker) is involved in tradeoffs between server utilization and customer satisfaction in
terms of line lengths and delays. Queueing theory and simulation analysis are used to predict these measures
of system performance as a function of the input parameters. The input parameters include the arrival rate
of customers, the service deniands of customers, the rate at which a server works, and the number and

T

Scrur

Waiting lnk of
Calling population customers
of potential customers

Figure 6.1 Simple queueing model.
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arrangement of servers. To a certain degree, some of the input parameters are vnder management's direct
control. Consequently, the performance measures could be under their indirect control. provided that the
relationship between the performance measures and the input parameters is adequately understood for the
given system.

For relatively simple systems, these performance measures can be computed mathematically—at great
savings in time and expense as compared with the use of & simulation model—but. for realistic modcels of
complex systems, simulation is usually required. Nevertheless. analvtically tractable models, although usually

requiring many simplifying assumptions, are valuable for rough-cu! estimates ol svs
rough-cut estimates may then be refined by use of a detailed wnd more realiste sinsictes s medel. Simple
models are also useful for develoning an understunding of the dynamic behavior off quctcnig sy stems and
the relationships between various performance measures. This chapter will not develop the mathematical
theory of queues but instead will discuss some of the well-known models. Foran elementar, treatment of
queueing theory, the reader is reterred to the survey chapters in Hillier and Lickerman [2005]. Wagner | 1975]
or Winston [1997]. More extensive treatments with a view toward applicatiois sre given by Cooper [19QU0].
Gross and Harris [1997], Hall [1991] and Nelson | 1995]. The latter tvo teats especially emphasize enginecring
and management applications.

This chapter discusses the general characteristics of queues. the meanings and relationships of the
important performance measures, estimation of the mean measures of perfeninance from a stmulation. the
effect of varying the input parameters, and the mathematical solution of o =mall number of impartant and

e portormance. These

basic queucing models.

6.1 CHARACTERISTICS OF QUEUEING SYSTEMS

The key elements of a queueing system are the customers and servers. The term “customer” can refer to people.
machines, trucks, mechanics. patients, pallets. airplanes. ¢-maii. cases. orders. or dirty clothes-—anything
that arrives at a facility and requires service. The term “server”™ might refer to receptionists. repairpersons.,
mechanics, tool-crib clerks, medical personnel, automatic storage and retrieval machines (e.g.. cranes).
runways at an airport. automatic packers. order pickers. CPUs in a computer, or washing machines—any
resource (person, machine. etc.) that provides the requested service. Although the terminology employed
will be that of a customer arriving to a service facility. sometimes the server moves to the customer: for
example. a repairperson moving to a broken machine. This in no way invalidates the models but is merely a
matter of terminology. Table 6.1 lists a nuraber of different systems together with a subsystem consisting of
“arriving customers™ and one or more “servers.” The remuinder of this section describes the elements of a
queueing system in more detail.

6.1.1 The Calling Population

The population of potential customers, referred to as the calling population, may be assumed to be finite or
infinite. For example. consider a bank of five machines that are curing tires. After an interval of time.
a machine automatically opens and must be attended by a worker who removes the tire and puts an uncured
tire into the machine. The machines are the
The worker is the “server.” who “serves” an open machine as soon as possible. The calling population is
finite and consisws of the five machines.

In systems with a large population of potential customers. the calling population is usually assumed to
be infinite. For such systems, this assumption is usually innocuous and. furthermore, it might simplify the
model. Examples of infinite populations include the potential customers of a restaurant, bank. or other sinlar
service facility and also very large groups of machines serviced by a technictan. Even though the aciual

‘customers.” who “arrive” at the instant they automatically open.
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Table 6.1 Examples of Queueing Systems

Svstem Customers Server(s)
Reception desk People Receptionist
Repair facility Machines Repairperson
Garage Trucks Mechanic

Tool crib Mechanics Tool-crib clerk
Hospital Patients Nurses
Warehouse Pallets Fork-lift Truck
Airport Airplanes Runway
Production line Cases Case-packer
Warehouse Orders Order-picker
Road network Cars Traffic light
Grocery Shoppers Checkout station
Laundry Dirty linen Washing machines/dryers
Job shop Jobs Machines/workers
Lumberyard Trucks Overhead crane
Sawmill Logs Saws

Computer Jobs CPU. disk. CDs
Telephone Calls Exchange

Ticket office Football tans Clerk

Mass transit Riders Buses, trains

population could be finite but large. it is generally safe to use infinite population models—provided that the
number of customers being served or waiting tor service at any given time is a small proportion of the
population of potential customers.

The main difference between finite and infinite population models is how the arrival rate is defined.
In an infinite population model, the arrival rate (i.e., the average number of arrivals per unit of time) is not
affected by the number ot customers who have left the calling population and joined the queueing system.
When the arrival process is homogeneous over time (e.g., there are no “rush hours™), the arrival rate is
usually assumed to be constant. On the other hand, for finite calling-population models, the arrival rate to
the queueing system does depend on the number of customers being served and waiting. To take an extreme
case, suppose that the calling population has one member, for example, a corporate jet. When the corporate jet
is being serviced by the team of mechanics who are on duty 24 hours per day, the arrival rate is zero, because
there are no other potential customers (jets) who can arrive at the service facility (team of mechanics). A more
typical example is that of the five tire-curing machines serviced by a single worker. When all five are closed
and curing a tire, the worker is idle and the arrival rate is at a maximum, but the instant a machine opens and
requires service, the arrival rate decreases. At those times when all five are open (so four machines are
waiting for service while the worker is attending the other one), the arrival rate is zero; that is, no arrival is pos-
sible until the worker finishes with a machine, in which case it returns to the calling population and becomes a
potential arrival. [t may seem odd that the arrival rate is at its maximum when all five machines are closed. But
the arrival rate is defined as the expected number of arrivals in the next unit of time. so it becomes clear that
this expectation is largest when all machines could potentially open in the next unit of time.

6.1.2 System Capacity

In many queueing systems, there is a limit to the number of customers that may be in the waiting line or
system. For example, an automatic car wash might have room for only 10 cars to wait in line to enter the
mechanism. It might be too dangerous (or illegal) for cars to wait in the street. An arriving customer who
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finds the system full does not enter but returns immediately to the calling population. Some systems, such
as concert ticket sales for students, may be considered as having unlimited capacity, since there are no limits
on the number of students allowed to wait to purchase tickets. As will be seen later, when a system has
limited capacity, a distinction is made between the arrival rate (i.e.. the number of arrivals per time unit) and
the effective arrival rate (i.e., the number who arrive and enter the system per time unit).

6.1.3 The Arrival Process

The arrival process for infinite-population models is usually characterized in terms of interarrival times of
successive customers. Arrivals may occur at scheduled times or at random times. When at random times. the
interarrival times are usually characterized by a probability distribution. In addition. customers may arrive
one at a time or in batches. The batch may be of constant size or of random size.

The most important model for random arrivals is the Poisson arrival process. If A, represents the inter-
arrival time between customer n — 1 and customer n (A, is the actual arrival time of the first customer), then,
for a Poisson arrival process. A, is exponentially distributed with mean 1/ time units. The arrival rate i
A customers per time unit. The number of arrivals in a time interval of length 1, say N(r), has the Poisson dis-
tribution with mean Ar customers. For further discussion of the relationship between the Poisson distribution
and the exponential distribution, the reader is referred to Section 5.5.

The Poisson arrival process has been employed successtully as a model of the arrival of people to restau-
rants, drive-in banks, and other service facilities; the arrival of telephone calls to a call center; the arrival of
demands, or orders for a service or product; and the arrival of failed components or machines to a repair facility.

A second important class of arrivals is scheduled arrivals, such as patients to a physician’s office or
scheduled airline flight arrivals to an airport. In this case. the interarrival times {A,,n=1,2..} could be
cither constant or constant plus or minus a small random amount to represent early or late arrivals.

A third situation occurs when at least one customer is assumed to always be present in the queue, so that
the server is never idle because of a lack of customers. For example, the “customers™ may represent raw
material for a product, and sufficient raw material is assumed to be always available.

For finite-population models. the arrival process is characterized in a completely different tashion.
Define a customer as pending when that customer is outside the queueing system and a member of the poten-
tial calling population. For example. a tire-curing machine is “pending” when it is closed and curing a tire, and
it becomes “not pending” the instant it opens and demands service from the worker. Define a runtime of a
given customer as the length of time from departure from the queueing system until that customer’s next
arrival to the queue. Let A", AJ'". . be the successive runtimes of customer i. and let S, 8,1 L. be the
corresponding successive system times: that is, S is the total time spent in system by customer i during the
nth visit. Figure 6.2 illustrates these concepts for machine 3 in the tire-curing example. The total arrival
process is the superposition of the arrival times of all customers. Figure 6.2 shows the first and second arrival
of machine 3, but these two times are not necessarily two successive arrivals to the system. For instance,

/"V?) ! S,{'{‘ A:M, i S:vh |

Machine 3: Pending Open Pending Open
(system time) (system tume)
|
First arrival Second arrival
of machine 3 of machine 3

Figure 6.2 Arrival process for a finite-population model.
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if it is assumed that all machines are pending at time (. the first arrival to the system occurs at time
A=minfA AT A AT A S If A =A% then machine 2 is the firstarrival (ie., the first to open) atter
time 0. As discussed earlier. the arrival rate is not constant but is a function of the number of pending
customers.

One important application of finite-population models is the machine-repair problem. The machines are
the customers. and a runtime is also called time to failure. When a machine fails. it “arrives” at the queueing
system (the repair facility) and remains there until it is “served” (repaired). Times to failure for a given class
of machine have been characterized by the exponential. the Weibull, and the gamma distributions. Models
with an exponential runtime are sometimes analytically tractable: an example is given in Section 6.5.
Successive times to failure are usually assumed to be statistically independent, but they could depend on
other factors. such as the age of a machine since its last major overhaul.

6.1.4 Queue Behavior and Queue Discipline

Queue behavior refers to the actions of customers while in a queue waiting for service to begin. In some
situations. there is a possibility that incoming customers will balk (leave when they see that the line is too
long). renege (leave after being in the line when they see that the line is moving too slowly). or jockey (move
from one line to another if they think they have chosen a slow line).

Queue discipline refers to the logical ordering of customers in a queue and determines which customer
will be chosen for service when a server becomes free. Common queue disciplines include first-in—first-out
(FIFO): last-in—first-out (LIFO): service in random order (SIRO): shortest processing time first (SPT): and
service according 1o priority (PR). In a job shop. queue disciplines are sometimes based on due dates and on
expected processing time for a given type of job. Notice that a FIFO queue discipline implies that services
begin in the same order as arrivals, but that customers could leave the system in a different order because of
difterent-length service times.

6.1.5 Service Times and the Service Mechanism

The service times of successive arrivals are denoted by Sy, S5, Ss.... They may be constant or of random
duration. In the latter case. {S,. S». Si....} is usually characterized as a sequence of independent and
identically distributed random variables. The exponential. Weibull. gamma, lognormal and truncated normal
distributions have all been used successfully as models of service times in ditferent situations. Sometimes
services are identically distributed for all customers of a given type or class or priority, whereas customers of
different types might have completely different service-time distributions. In addition, in some systems.
service times depend upon the time of day or upon the length of the waiting line. For example. servers might
work faster than usual when the waiting line is long. thus effectively reducing the service times.

A gueueing system consists of a number of service centers and interconnecting queues. Each service
conter consists of some number of servers. ¢, working in parallel: that is. upon getting to the head of the line.
4 customer takes the first available server. Parallel service mechanisms are either single server (¢ = 1.
multiple server (1 < ¢ < e<), or unlimited servers (¢ = o). A elf-service facility is usually characterized as
having an unlimited number of servers.

Example 6.1
Consider a discount warehouse where customers may either serve themselves or wait tor one of taree clerks,

then finally leave after paying a single cashier. The system is represented by the flow diagram in Figure 6.3.
The subsystem. consisting of queue 2 and service center 2. iy shown in more detail in Figure 6.4. Other
variations of service mechanisms include batch service (a server serving several customers simultaneously ).
and a customer’s requiring several servers simultancously. In the discount warchouse. a clerk might pick
wveral small orders at the same time. but it may take two of the clerks to handle one heavy item.
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Service center 1

Queue |

¢ =%

(self-service)

Service center 3

Arrivals Queue 3 =1 Departures
. ——
(cashier)
Service center 2
Queue 2 =3
(3 clerks)
Figure 6.3 Discount warehouse with three service centers.
Service center 2
Server 1
Arrivals Departures

Server 2
Server 3

Figure 6.4 Service center 2, with ¢ = 3 parallel servers.

Machine 1 Machine 2 Machine 3
—
Queue | Queue 2 Queue 3
—_— e —— e —— —
Capacity 1000 Capacity 1000
Candy maker/ Packer Sealer/
wrapper wrapper

Figure 6.5 Candy-production line.

Example 6.2

A candy manufacturer has a production line that consists of three machines separated by inventory-in-process
buffers. The first machine makes and wraps the individual pieces of candy. the second packs 50 pieces in a
box, and the third machine seals and wraps the box. The two inventory buffers have capacities of 1000 boxes
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cach. As illustrated by Figure 6.5, the system is modeled as having three service centers, each center having
¢ = 1 server (a machine). with queue capacity constraints between machines. It is assumed that a sufficient
supply of raw material is always available at the first queue. Because of the queue capacity constraints,
machine | shuts down whenever its inventory buffer (queue 2) fills to capacity, and machine 2 shuts down
whenever its buffer empties. In brief, the system consists of three single-server queues in series with queue
capacity constraints and a contisnuous arrival stream at the first queue.

6.2 QUEUEING NOTATION

Recognizing the diversity of queucing systems. Kendall [1953] proposed a notational system for parallel
server systems which has been widely adopted. An abridged version of this convention is based on the format
A/B/c¢/N/K. These letters represent the following system characteristics:
A represents the interarrival-time distribution.
B represents the service-time distribution.
¢ represents the number of parallel servers.
N represents the system capacity.
K represents the size of the calling population.
Common symbols for A and B include M (exponential or Markov), D (constant or deterministic), £, (Erlang
of order k). PH (phase-type). H (hyperexponential), G (arbitrary or general), and G/ (general independent).
For example, M/M/1/eo/oo indicates a single-server system that has unlimited queue capacity and an infi-
nite population of potential arrivals. The interarrival times and service times are exponentially distributed.
When N and K are infinite. they may be dropped from the notation. For example, M/M/1/eo/e is often short-
ened to M/M/1. The tire-curing system can be initially represented by G/G/1/5/5.
Additional notation used throughout the remainder of this chapter for parallel server systems is listed in

Table 6.2. The meanings may vary slightly from system to system. All systems will be assumed to have a
FIFO queue discipline.

Table 6.2 Queueing Notation for Parallel Server Systems

P, Steady-state probability of having n customers in system
P, (1) Probability of n customers in system at time ¢

A Arrival rate

A Effective arrival rate

u Service rate of one server

P Server utilization

A, Interarrival time between customers # — 1 and n
S, Service time of the nth arriving customer
W, Total time spent in system by the nth arriving customer

W¢  Total time spent in the waiting line by customer n
Lty The number of customers in system at time /
L,(1) The number of customers in queue at time 7

L Long-run time-average number of customers in system
L,  Long-run time-average number of customers in queue
w Long-run average time spent in system per customer

w,  Long-run average time spent in queue per customer
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6.3 LONG-RUN MEASURES OF PERFORMANCE OF QUEUEING SYSTEMS

The primary long-run measures of performance of queueing systems are the long-run time-average number
of customers in the system (L) and in the queue (L) the long-run average time spent in system (i) and in
the queue (w,) per customer, and the server utilization, or proportion of time that a server is busy (p). The
term “system” usually refers to the waiting line plus the service mechanism, but. in general, can refer to any
subsystem of the queueing system: whereas the term “queue’ refers to the waiting line alone. Other meas-
ures of performance of interest include the long-run proportion of customers who are delayed in queue
longer than 1, time units. the long-run proportion of customers turned away because of capacity constraints,
and the long-run proportion of time the waiting line contains more than k, customers.

This section defines the major measures of performance for a general G/G/¢/N/K queueing system,
discusses their relationships. and shows how they can be estimated from a simulation run. There are two
types of estimators: an ordinary sample average. and a time-integrated (or time-weighted) sample average.

6.3.1 Time-Average Number in System L

Consider a queueing system over a period of time 7. and let L(1) denote the number of customers in the system
at time . A simulation of such a system is shown in Figure 6.6.

Let 7, denote the total time during [0. 7'} in which the system contained exactly / customers. In Figure 6.6,
itis seen that T, = 3, T, = 12, 75 = 4, and Ty = 1. (The line segments whose lengths total 7, = 12 are
labelled T, in Figure 6.6. etc.) In general. Zl:“'l: =T. The time-weighted-average number in a system is
defined by

1:%211_21(9) (6.1)

- =0

For Figure 6.6. L =[0(3)+1(12)+ 2(4)+ 3(1)]/20 = 23/20 = 1.15 customers. Notice that 7,/T is the proportion
of time the system contains exactly 7 customers. The estimator L isan example of a time-weighted average.

By considering Figure 6.6, it can be seen that the total area under the function L(r) can be decomposed
into rectangles of height 7 and length 7;. For example. the rectangle of area 3 x T has base running from

Lin

|
|

T 5o T, 7
! L i i i
i | : |
P | ; x
by \ [ [
v | | |
[ [ | I
1 /(1 | | : . i ! IU ‘ | “
0 2 4 6 8 10 12 14 16 I8 7= 20 t

Figure 6.6 Number in system, L(1), at time 1.
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1=7tor=8 (thus T = 1); however. most of the rectangles are broken into parts, such as the rectangle of
arca 2 x T, which has part of its base between ¢ =5 and r = 7 and the remainder from =8 to 1= 10 (thus T, =

2 + 2 =4). It follows that the total area is given by 2 iT, = J. L(t)dr, and. therefore, that

L:- :—j Lt)dt (6.2)

The expressions in Equations (6.1) and (6.2) are always equal for any queueing system, regardless of the
number of servers. the queue discipline. or any other special circumstances. Equation (6.2) justifies the
terminology time-integrated average.

Many queueing systems exhibit a certain kind of long-run stability in terms of their average performance.
For such systems, as time 7 gets large, the observed time-average number in the system L approaches a limiting
value, say L. which is called the long-run time-average number in system—that is, with probability 1.

:—J Litydr - LasT —» (6.3)

The estimator L is said to be strongly consistent for L. If simulation run length 7 is sufficiently long, the esti-
mator L. becomes arbitrarily close to L. Unfortunately, for 7" < oo, L depends on the initial conditions at time 0.

Equations (6.2) and (6.3) can be applied to any subsystem of a queueing system as well as they can to
the whole system. If L, (1) denotes the number of customers waiting in line. and TY denotes the total time
during [0, T] in which exactly i customers are waiting in line, then

- L
Ly= 2T :;f'{“ Ly(tydi — L, as T — o (6.4)
i=0

where L, is the observed time-average number of customers waiting in line from time 0 to time 7 and L, is
the long-run time-average number waiting in line.

Example 6.3

Suppose that Figure 6.6 represents a single-server queue—that is, a G/G/1/N/K queueing system (N 2 3, K 2 3).
Then the number of customers waiting in line is given by L(r) defined by

0 if L(t)=0
Lu(z):

Liny-1 if Lr)=1

and shown in Figure 6.7. Thus, 7Y =5+10=15.7Y =2+2=4, and T = I. Therefore,
[ = 0(15)+ 1)+ 2(1)

o = = (.3 customers
20

6.3.2 Average Time Spent in System Per Customer w

If we simulate a queueing system for some period of time. say 7. then we can record the time each customer spends
in the system during [0, 7], say W,. W,, ..., Wy. where N is the number of arrivals during [0. T'|. The average
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Figure 6.7 Number waiting in line, Ly(n), at time 1.

time spent in system per customer, called the average system time, is given by the ordinary sample average

N
w=—>»W 6.5)
Nz i (

i=1
For stable systems, as N — oo,

W= w (6.6)

with probability 1, where w is called the long-run average system time.
If the system under consideration is the queue alone, Equations (6.5) and (6.6) are written as

. 1 N
w, = ﬁz WY —w, asN—eo (6.7)

i=1

where WY is the total time customer i spends waiting in queue, w, is the observed average time spent in
queue (called delay), and w, is the long-run average delay per customer. The estimators w and w,, are influ-
enced by initial conditions at time 0 and the run length 7, analogously to L.

Example 6.4
For the system history shown in Figure 6.6, N =5 customers arrive. W, =2, and W, = 20 — 16 = 4, but W, Wy,
and W, cannot be computed unless more is known about the system. Assume that the system has a single
server and a FIFO queue discipline. This implies that customers will depart from the system in the same
order in which they arrived. Each jump upward of L(f) in Figure 6.6 represents an arrival. Arrivals occur at
times 0, 3, 5.7, and 16. Similarly, departures occur at times 2, 8, 10, and 14. (A departure may or may not
have occurred at time 20.) Under these assumptions, it is apparent that W, = 8 — 3 = 5, W;=10-5=5,
W, =14 -7 =7, and therefore

. 24+5+5+7+4 23

— =4.6 time units
5 5

W=—-
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Thus. on the average, an arbitrary customer spends 4.6 time units in the system. As for time spent in the waiting
line. it can be computed that W¢ =0, WY = 0. W¢ =8-5=3 W& =10-7 =3 and W' =0: thus.

; 0+()+%H+() ) .
W, = =1{.2 ume units

6.3.3 The Conservation Equation: L = Aw

For the system exhlblted in Figure 6.6, there were N =5 arrivals m 7 = 20 time units, and thus the observed
arrival rate was A = N/T = 1/4 customer per time unit. Recall that L =1.15 and v = 4.6: hence. it follows that

>»,

L= (6.8)
This relationship between L. A, and w is not coincidental: it holds for almost all queueing systems or sub-
systems regardless of the number of servers. the queue discipline. or any other special circumstances.
Allowing T — oo and N — oo, Equation (6.8) becomes

L=Aw (6.9)

where A — 4. and A is the long-run average arrival rate. Equation (6.9) is called a conservation equation and
is usually attributed to Little [1961]. It says that the average number of customers in the system at an arbi-
trary point in time is equal to the average number of arrivals per time unit. times the average time spent in
the system. For Figure 6.6, there is one arrival every 4 time units (on the average) and each arrival spends
4.6 time units in the system (on the average). so at an arbitrary point in time there will be (1/4) (4.6) = 115
customers present (on the average).

Equation (6.8) can also be derived by reconsidering Figure 6.6 in the following manner: Figure 6.8
shows system history. L(1). exactly as in Figure 6.6, with each customer’s time in the system. W represented
by a rectangle. This representation again assumes a single-server system with a FIFO queue discipline. The

L)
3 —
I |
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! |
! |
| i
2 — r———\
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i W, ' 1
L |
| | |
| | |
! : t
| - — R
s | W, \ :
o . w;“ T | !
Wy W, . ! \ W |
| --—» le - >| ! | 1 —— ey
by | 1 t
Lo ! i L i ; R
0 2 1 6 8 10 2 14 16 IS 7 =20 !

Figure 6.8 System times, W, for single-server FIFO system.
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rectangles for the third and tourth customers are in two and three separate picces, respectively. The jth
rectangle has height 1 and length W, for cach / = 1.2, ... N. It follows that the total system time of all
customers is given by the total area under the number-in-system function, L(¢): that is,

N

w =
i

7

L(t)dt (6.10)
0

Therefore. by combining Equations (6.2) and (6.5) with A = N/T. it follows that

- NG -
L=—| Liydi===% W =iy
T'[’ TN; '

which is Little’s equation (6.8). The intuitive and informal derivation presented here depended on the single-
server FIFO assumptions, but these assumptions are not necessary. In fact. Equation (6.10), which was the
key to the derivation. holds (at least approximately) in great generality. and thus so do Equations (6.8) and
(6.9). Exercises 14 and 15 ask the reader to derive Equations (6.10) and (6.8) under different assumptions.

Technical note: 1. as defined in Section 6.3.2. W, is the system time for customer i during [0, T}. then
Equation (6.10) and hence Equation (6.8) hold exactly. Some authors choose to define W, as total system
time for customer 7; this change will affect the value of W, only for those customers i who arrive before time
T but do not depart until after time T (possibly customer 5 in Figure 6.8). With this change in definition.
Equations (6.10) and (6.8) hold only approximately. Nevertheless. as T — oo and N —> oo, the error in
Equation (0.8) decreases to zero. and. therefore. the conservation equation (6.9) for long-run measures of
performance—namely. L = Aw—holds exactly.

6.3.4 Server Utilization

Server utilization is defined as the proportion of time that a server is busy. Observed server utilization.
denoted by p. is defined over a specified time interval [0, 7). Long-run server utilization is denoted by p. For
systems that exhibit long-run stability.

popasT —oo

Example 6.5
Per Figure 6.6 or 6.8. and assuming that the system has a single server, it can be seen that the server utilization
is jp = (total busy time)/T = (3" T)/T =(T~T,)/T =17/20.

Server utilization in G/G/1/=/= queues

Consider any single-server queueing system with average arrival rate A customers per time unit, average service
time E(S) = I/u time units. and infinite queue capacity and calling population Notice that £(S) = 1/u implies that.
when busy, the server is working at the rate i customers per time unit, on the average:; U is called the service rate.
The server alone is a subsystem that can be considered as a queueing system in itself; hence, the conservation
Equation (6.9). L = Aw. can be applied to the server. For stable systems, the average arrival rate to the server, say
A, must be identical to the average arrival rate to the system, A (certainly A, £ A—customers cannot be served
faster than they arrive—but. if A, < A, then the waiting line would tend to grow in length at an average rate of
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Figure 6.9 Number being served, L(1) — Ly(1), at time 1.

A — A, customers per time unit, and so we would have an unstable system). For the server subsystem, the average
system time is w = E(S) = i ~'. The actual number of customers in the server subsystem is either O or 1, as shown
in Figure 6.9 for the system represented by Figure 6.6. Hence, the average number, L., is given by

. 1 ¢7 _T—TQ
L= ?L (L)~ L) dr = =—=*

In this case, l:r =17/20 = p. In general, for a single-server queue, the average number of customers being

served at an arbitrary point in time is equal to server utilization. As T — o, L = p— L =p. Combining
these results into L = Aw for the server subsystem yields

p= AE(S):% 6.11)

—that is, the long-run server utilization in a single-server queue is equal to the average arrival rate divided
by the average service rate. For a single-server queue to be stable, the arrival rate A must be less than the
service rate U

A<

or

p=i<] (6.12)
u

If the arrival rate is greater than the service rate (A > ), the server will eventually get further and further
behind. After a time, the server will always be busy, and the waiting line will tend to grow in length at an
average rate of (A — u) customers per time unit, because departures will be occurring at rate {1 per time unit.
For stable single-server systems (4 < pt or p < 1), long-run measures of performance such as average queue
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length L, (and also L. w, and wo) are well defined and have meaning. For unstable systems (4 > ). long-run
server utilization is 1, and long-run average queue length is infinite: that is,

| ¢/
-—f L,(t)dt — +o0asT — oo
T-

Similarly, L = w = 1w, = eo. Therefore these long-run measures of performance are meaningless for unstable
queues. The quantity A/yt is also called the offered load and is a measure of the workload imposed on the system.

Server utilization in G/G/c/~/~ queues

Consider a queueing system with ¢ identical servers in parallel. If an arriving customer finds more than one
server idle, the customer chooses a server without favoring any particular server. (For example, the choice of
server might be made at random.) Arrivals occur at rate A from an infinite calling population, and cach server
works at rate 4 customers per time unit. From Equation (6.9). L = Aw. applied to the server subsystem alone,
an argument similar to the one given for a single server leads to the result that, for systems in statistical
equilibrium. the average number of busy servers, say L., is given by

L =AES) == (6.13)

Clearly. 0 < L, < ¢. The long-run average server utilization is defined by

L ) :
p:—‘—i— (6.14)

¢l
and 50 0 < p < 1. The utilization p can be interpreted as the proportion of time an arbitrary server is busy in
the long run.
The maximum service rate of the G/G/c/eo/co system is ¢, which occurs when all servers are busy. For
the system to be stable. the average arrival rate A must be less than the maximum service rate c; that is. the
system is stable if and only if

A<cu (6.15)

or. equivalently, if the offered load A/t is less than the number of servers ¢. If A > cp, then arrivals are
weeurring. on the average. faster than the system can handle them, all servers will be continuously busy, and
the waiting line will grow in length at an average rate of (A — ci) customers per time unit. Such a system
15 unstable, and the long-run performance measures (L, Ly, w.and w) are again meaningless for such systems.

Notice that Condition (6.15) generalizes Condition (6.12). and the equation for utilization for stable
systems, Equation (6.14), generalizes Equation (6.11).

Equations (6.13) and (6.14) can also be applied when some servers work more than others. for example.
when customers favor one server over others, or when certain servers serve customers only if all other servers
are busy. In this case, the L, given by Equation (6.13) is still the average number of busy servers, but p, as
given by Equation (6.14). cannot be applied to an individual server. Instead, p must be interpreted as the average
utilization of all servers.

Example 6.6
Customers arrive at random to a license bureau at a rate of A = 50 customers per hour. Currently, there are
20-clerks, each serving ¢ = 5 customers per hour on the average. Therefore the long-run, or steady-state.
average utilization of a server, given by Equation (6.14), is
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A 50 .
p=—= =05
cu 2005
and the average number of busy servers is
50
L‘ o= —A—- = —= ]0
u 5

Thus, in the long run, a typical clerk is busy serving customers only 50% of the time. The oftice manager
asks whether the number of servers can be decrcased. By Equation (6.15), it follows that, for the system to
be stable. it is necessary for the number of servers 1o satisty
A
c>—

U

or ¢ > 50/5 = 10. Thus. possibilities for the manager to consider include ¢ = 1. or ¢ =12, 0r ¢ = 13, ...
Notice that ¢ = 11 guarantees long-run stability only in the sense that all servers, when busy, can handle the
incoming work load (i.e.. ct > A) on average. The office manager could well desire to have more than
the minimum number of servers (¢ = 11) because of other factors. such as customer delays and length of the
waiting line. A stable queue can still have very long lines on average.

Server utilization and system performance

As will be illustrated here and in later sections. system performance can vary widely for a given value of
utilization, p. Consider a G/G/1/eo/oc queue: that is, a single-server queue with arrival rate A. service rate .
and utilization p = A/u < 1.

At one extreme. consider the D/D/1 queue. which has deterministic arrival and service times. Then all
interarrival times {A,, A, ...} are equal to E(A) = 1/A, and all service times {S,. S,. ...} are equal to
E(S) = 1/u. Assuming that a customer arrives to an empty system at time 0. the system evolves in a completely
deterministic and predictable fashion, as shown in Figure 6.10. Observe that L = p = Aow=ES)=u ",
and L, = w, = 0. By varying A and p. server utilization can assume any value between 0 and 1. yet there Is
never any line whatsoever. What, then. causes lines to build. if not a high server utilization? In general, it is
the variability of interarrival and service times that causes lines to fluctuate in length.
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Figure 6.10 Deterministic queue (D/D/1).
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Example 6.7
Consider a physician who schedules patients every 10 minutes and who spends S; minutes with the ith
patient, where

§ 9 minutes with probability 0.9

" 112 minutes with probability 0.1

Thus. arrivals are deterministic (A, = A, = --- = A 7' = 10) but services are stochastic (or probabilistic). with
mean and variance given by

E(S)=900.9)+12(0.1) = 9.3 minutes

and
V(S)=ESH=ES)I
=97(0.9)+127(0.1)—(9.3)°
= (.81 minutes”

Here. p= A/u = E(S)Y/E(A) =9.3/10 = 0.93 < 1. the system is stable, and the physician will be busy 93% of
the time in the long run. In the short run, lines will not build up as long as patients require only 9 minutes of
service. but, because of the variability in the service times, 10% of the patients will require 12 minutes,
which in turn will cause a temporary line to form.

Suppose the system is simulated with service times. 5, =9.5.=12.5:=9.5,=9. 5: =9, .... Assuming
that at time 0 a patient arrived to find the doctor idle and subsequent patients arrived precisely at times
10. 20, 30, ... the system evolves as in Figure 6.11. The delays in queue are W = WY =0, W =22-20=2.
WY =31-30=1L WY =0. The occurrence of a relatively long service time (here S, = 12) caused a waiting
line to form temporarily. In general, because of the variability of the interarrival and service distributions.
rclatively small interarrival times and relatively large service times occasionally do occur, and these in turn
cause lines to lengthen. Conversely, the occurrence of a large interarrival time or a small service time will
tend to shorten an existing waiting line. The relationship between utilization, service and interarrival
variability, and system performance will be explored in more detail in Section 6.4.
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Figure 6.11 Number of patients in the doctor’s office at time 1.
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6.3.5 Costs in Queueing Problems
In many queueing situations. costs can be associated with various aspects of the waiting line or servers.
Suppose that the system incurs a cost for each customer in the queue, say at a rate of $10 per hour per
customer. If customer j spends WY hours in the queue, then 2 l(fﬁl()- W/Q ) 1s the total cost of the N customers
-
who arrive during the simulation. Thus, the average cost per customer is
N $ 10 W,(*) N
——=3%10-w,
N (¢

1=1

by Equation (6.7). If A customers per hour arrive (on the average). the average cost per hour is

(,i customers ] ( $10-w,,

=510 iﬁ'(, =$10- i(,/h<)ur
hour

customer
the last equality following by Little’s equation (6.8). An alternative way to derive the average cost per hour
is to consider Equation (6.2). If T is the total time over the interval [0. T] that the system contains exactly i

customers, then $10 iT¢ is the cost incurred by the system during the time exactly i customers are present.

Thus, the total cost is Z;il(fﬁl()-iﬂ’ ). and the average cost per hour is

= $10-iT¢
i ,—=$I(J-L0/hour

=1

by Equation (6.2). In these cost expressions, io may be replaced by L, (if the long-run number in queue is

known), or by L or L (if costs are incurred while the customer is being served in addition to being delayed).
The server may also impose costs on the system. If a group of ¢ parallel servers (1 < ¢ < o) have

utilization p. and each server imposes a cost of $5 per hour while busy, the total server cost per hour is

$5-cp

because c¢p is the average number of busy servers. If server cost is imposed only when the servers are idle,
then the server cost per hour would be

$S-c(l=p)

because ¢(l — p) = ¢ — ¢p is the average number of idle servers. In many problems, two or more of these
various costs are combined into a total cost. Such problems are illustrated by Exercises 5. 12, 17, and 20.
In most cases. the objective is to minimize total costs (given certain constraints) by varying those parame-
ters that are under management’s control, such as the number of servers. the arrival rate, the service rate, and
the system capacity.

6.4 STEADY-STATE BEHAVIOR OF INFINITE-POPULATION MARKOVIAN MODELS

This section presents the steady-state solution of a number of queucing models that can be solved mathemat-
ically. For the infinite-population models, the arrivals are assumed to follow a Poisson process with rate A4 arrivals
per time unit—that is, the interarrival times are assumed to be exponentially distributed with mean 1/A. Service
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times may be exponentially distributed (M) or arbitrarily (G). The queue discipline will be FIFO. Because of
the exponential-distributional assumptions on the arrival process. these models are called Markovian models.

A queueing system is said to be in statistical equilibrium, or steady state. if the probability that the
system is in a given state is not time dependent—that s,

P(L(h=n)=P(1)=P,

is independent of time 7. Two properties—approaching statistical equilibrium from any starting state. and
remaining in statistical equilibrium once it is reached—are characteristic of many stochastic models, and, in
particular, of all the systems studied in the following subsections. On the other hand. if an analyst were inter-
ested in the transient behavior of a queue over a relatively short period of time and were given some specific
initial conditions (such as idle and empty). the results to be presented here would be inappropriate. A tran-
sient mathematical analysis or. more likely, a simulation model would be the chosen tool of analysis.

The mathematical models whose solutions are shown in the following subsections can be used to obtain
approximate results even when the assumptions of the model do not strictly hold. These results may be
considered as a rough guide to the behavior of the system. A simulation may then be used for a more refined
analysis. However, it should be remembered that a mathematical analysis (when it is applicable) provides the
true value of the model parameter (e.g.. L), whereas a simulation analysis delivers a statistical estimate (e. . L)
of the parameter. On the other hand, for complex systems. a simulation model is often a more faithful
representation than a mathematical model.

For the simple models studied here. the steady-state parameter L. the time-average number of customers
in the system, can be computed as

L= np (6.16)

where {P,} are the steady-state probabilities of finding n customers in the system (as defined in Table 6.2).
As was discussed in Section 6.3 and was expressed in Equation 6.3), L can also be interpreted as a long-run
measure of performance of the system. Once L is given. the other steady-state parameters can be computed
readily from Little’s equation (6.9) applied to the whole svstem and to the queue alone:

L
w=—
A
| )
wgzw—;l- (6.17)
L, = /le

where A is the arrival rate and g is the service rate per server.

For the G/G/c/eo/> queues considered in this section to have a statistical equilibrium, a necessary and
sufficient condition is that A /(cp) < 1, where A4 is the arrival rate, g1 is the service rate of one server, and ¢ is
the number of parallel servers. For these unlimited capacity. infinite-calling-population models, it shall be
assumed that the theoretical server utilization, p = A /(cu), satisties p < 1. For models with finite system
capacity or finite calling population, the quantity A /(cu) may assume any positive value.

6.4.1 Single-Server Queues with Poisson Arrivals and Unlimited Capacity: M/G/1

Suppose that service times have mean 1/u and variance ¢ and that there is one server. If p=Alu<1,then
the M/G/1 queue has a steady-state probability distribution with steady-state characteristics, as given in
Table 6.3. In general, there is no simple expression for the steady-state probabilities Py, P,, P,, .... When
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Table 6.3 Steady-State Parameters of the M/G/ 1

Queve
—
A
p _—
u
I ‘+i(l/,u +o"):p+;)'tl+a/_1)
21-p) 21-p)
1, Al +o%)
u 2(1-p)
wy Al + o)
2(1-p)
L, Alp+oT) piltou)
2= p) 21 -p)
P, I -p

A < p. the quantity p = A/p is the server utilization. or long-run proportion of time the server is busy. As is
seen in Table 6.3, 1 — P, = p can also be interpreted as the steady-state probability that the system contains
one or more customers. Notice also that L — L, = p is the time-average number of customers being served.

Example 6.8
Widget-making machines malfunction apparently at random and then require a mechanic’s attention. It is
assumed that malfunctions occur according to a Poisson process. at the rate A = 1.5 per hour. Observation
over several months has found that repair times by the single mechanic take an average time of 30 minutes,
with a standard deviation of 20 minutes. Thus the mean service time 1/ = 1/2 hour. the service rate is g =2
per hour and ¢” = (20)° minutes” = 1/9 hour”. The “customers™ are the widget makers. and the appropriate
model is the M/G/1 queue. because only the mean and variance of service times are known, not their distri-
bution. The proportion of time the mechanic is busy is p= A/u = 1.5/2=0.75. and. by Table 6.3, the steady-
state time average number of broken machines is

(1.5 (0.5 +1/9]
201-0.75)

=0.75+1.625 = 2.375 machines

L =075+

Thus. an observer who notes the state of the repair system at arbitrary times would find an average of 2.375
broken machines (over the long run).

A closer look at the formulas in Table 6.3 reveals the source of the waiting lines and delays in an M/G/|
queuce. For example. L, may be rewritten as

i pl . /120'2
2l-p) 2Al-p)

©

The first term involves only the ratio of the mean arrival rate. A, to the mean service rate. y. As shown by
the second term, it A and p are held constant. the average length of the waiting line (L)) depends on the vari-
ability. 0. of the service times. If two systems have identical mean service times and mean interarrival times.



